
 

 

Design Engineering Report 

 

 

 

 

 

 

 

 

 

 

 Course: Computer Engineering 

 Code: ICS2O, ICS3U, ICS4U 

 Student: Xander Chin 

 Date: November 26, 2022 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

ii 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

iii 

Table of Contents 

ICS2O ........................................................................................................................................................................... 1 

PROJECT 1.1: VOLTAGE H-BRIDGE ................................................................................................................... 2 

PURPOSE .................................................................................................................................................................... 2 
REFERENCE ............................................................................................................................................................... 2 
PROCEDURE ............................................................................................................................................................... 2 
MEDIA ....................................................................................................................................................................... 3 
REFLECTION .............................................................................................................................................................. 3 

PROJECT 1.2: THE CAPACITOR VISUALIZER ................................................................................................. 4 

PURPOSE .................................................................................................................................................................... 4 
REFERENCE ............................................................................................................................................................... 4 
PROCEDURE ............................................................................................................................................................... 4 
MEDIA ....................................................................................................................................................................... 5 
REFLECTION .............................................................................................................................................................. 7 

PROJECT 1.3: THE ANALOG OSCILLATOR (AKA THE ASTABLE MULTIVIBRATOR) ......................... 8 

PURPOSE .................................................................................................................................................................... 8 
REFERENCE ............................................................................................................................................................... 8 
THEORY ..................................................................................................................................................................... 8 
PROCEDURE ............................................................................................................................................................... 8 
MEDIA ....................................................................................................................................................................... 9 
REFLECTION ............................................................................................................................................................ 10 

PROJECT 1.4: THE COUNTING CIRCUIT ......................................................................................................... 11 

THEORY ................................................................................................................................................................... 11 
PART A: ANALOG INPUT .......................................................................................................................................... 12 

Purpose ............................................................................................................................................................... 12 
Reference ........................................................................................................................................................... 12 
Procedure ........................................................................................................................................................... 12 
Media ................................................................................................................................................................. 13 

PART B: NAND GATE OSCILLATOR (4011)............................................................................................................. 13 
Purpose ............................................................................................................................................................... 13 
Reference ........................................................................................................................................................... 14 
Procedure ........................................................................................................................................................... 14 
Media ................................................................................................................................................................. 15 
Reflection ........................................................................................................................................................... 16 

PART C: DECADE COUNTER (4017) ......................................................................................................................... 16 
Purpose ............................................................................................................................................................... 16 
Reference ........................................................................................................................................................... 16 
Procedure ........................................................................................................................................................... 17 
Media ................................................................................................................................................................. 18 

PART D: DECIMAL COUNTING BINARY UP/DOWN COUNTER (4510/4516) .............................................................. 18 
Purpose ............................................................................................................................................................... 19 
Reference ........................................................................................................................................................... 19 
Procedure ........................................................................................................................................................... 19 
Media ................................................................................................................................................................. 20 

PART E: BINARY COUNTING DECIMAL DECODER (4511) ........................................................................................ 21 
Purpose ............................................................................................................................................................... 21 
Reference ........................................................................................................................................................... 21 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

iv 

Procedure ........................................................................................................................................................... 21 
PART F: SEVEN-SEGMENT DISPLAY......................................................................................................................... 22 

Purpose ............................................................................................................................................................... 22 
Reference ........................................................................................................................................................... 22 
Procedure ........................................................................................................................................................... 23 
Media ................................................................................................................................................................. 24 
Reflection ........................................................................................................................................................... 24 

PROJECT 1.5 (ISP): THE ANALOG TRAFFIC LIGHT ..................................................................................... 25 

PURPOSE .................................................................................................................................................................. 26 
THEORY ................................................................................................................................................................... 26 
PART A: THE BASE TRAFFIC LIGHT ......................................................................................................................... 27 

Purpose ............................................................................................................................................................... 27 
Reference ........................................................................................................................................................... 27 
Procedure ........................................................................................................................................................... 28 
Media ................................................................................................................................................................. 30 

PART B: THE PEDESTRIAN SIGNAL .......................................................................................................................... 30 
Purpose ............................................................................................................................................................... 30 
Reference ........................................................................................................................................................... 31 
Procedure ........................................................................................................................................................... 31 
Media ................................................................................................................................................................. 33 

PART C: THE OSCILLATING PEDESTRIAN SIGNAL .................................................................................................... 33 
Purpose ............................................................................................................................................................... 34 
Procedure ........................................................................................................................................................... 34 
Media ................................................................................................................................................................. 35 

PART D: THE COUNTDOWN TIMER .......................................................................................................................... 35 
Purpose ............................................................................................................................................................... 35 
Reference ........................................................................................................................................................... 36 
Procedure ........................................................................................................................................................... 36 
Media ................................................................................................................................................................. 38 
Reflection ........................................................................................................................................................... 39 

ICS3U ......................................................................................................................................................................... 40 

PROJECT 2.1: THE TRAFFIC LIGHT ................................................................................................................. 41 

PURPOSE .................................................................................................................................................................. 41 
REFERENCE ............................................................................................................................................................. 41 
PROCEDURE ............................................................................................................................................................. 41 
MEDIA ..................................................................................................................................................................... 43 
CODE ....................................................................................................................................................................... 44 
REFLECTION ............................................................................................................................................................ 44 

PROJECT 2.2: PERSISTENCE OF VISION ......................................................................................................... 45 

PURPOSE .................................................................................................................................................................. 45 
REFERENCE ............................................................................................................................................................. 45 
PROCEDURE ............................................................................................................................................................. 45 
MEDIA ..................................................................................................................................................................... 48 
CODE ....................................................................................................................................................................... 49 

EEPROM ........................................................................................................................................................... 49 
Main ................................................................................................................................................................... 51 

REFLECTION ............................................................................................................................................................ 54 

PROJECT 2.3: ASK UNO ........................................................................................................................................ 55 

PURPOSE .................................................................................................................................................................. 55 
REFERENCE ............................................................................................................................................................. 55 
PROCEDURE ............................................................................................................................................................. 55 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

v 

MEDIA ..................................................................................................................................................................... 57 
CODE ....................................................................................................................................................................... 58 

NANO ................................................................................................................................................................ 58 
UNO ................................................................................................................................................................... 60 

REFLECTION ............................................................................................................................................................ 62 

PROJECT 2.4.1: BREADBOARD ATMEGA328P ................................................................................................ 63 

PURPOSE .................................................................................................................................................................. 63 
REFERENCES ............................................................................................................................................................ 63 
PROCEDURE ............................................................................................................................................................. 64 
MEDIA ..................................................................................................................................................................... 67 
CODE ....................................................................................................................................................................... 67 
REFLECTION ............................................................................................................................................................ 70 

PROJECT 2.4.2: PERMA-PROTO ATMEGA328P .............................................................................................. 71 

PURPOSE .................................................................................................................................................................. 71 
REFERENCES ............................................................................................................................................................ 71 
PROCEDURE ............................................................................................................................................................. 71 
MEDIA ..................................................................................................................................................................... 74 
REFLECTION ............................................................................................................................................................ 74 

PROJECT 2.5: WIRELESS COMMUNICATION (INFRARED) ....................................................................... 75 

PURPOSE .................................................................................................................................................................. 75 
REFERENCES ............................................................................................................................................................ 75 
PROCEDURE ............................................................................................................................................................. 75 
MEDIA ..................................................................................................................................................................... 78 
CODE ....................................................................................................................................................................... 79 
REFLECTION ............................................................................................................................................................ 81 

PROJECT 2.6: (ISP - MEDIUM): THE LIDAR MEASUREMENT DEVICE ................................................... 82 

PURPOSE .................................................................................................................................................................. 83 
THEORY ................................................................................................................................................................... 83 
PART A: HARDWARE ............................................................................................................................................... 84 

Purpose ............................................................................................................................................................... 84 
References .......................................................................................................................................................... 84 
Procedure ........................................................................................................................................................... 84 
Media ................................................................................................................................................................. 89 

PART B: SOFTWARE ................................................................................................................................................. 89 
Purpose ............................................................................................................................................................... 89 
References .......................................................................................................................................................... 89 
Procedure ........................................................................................................................................................... 89 
Media ................................................................................................................................................................. 92 

PART C: MATHEMATICS .......................................................................................................................................... 93 
Purpose ............................................................................................................................................................... 93 
References .......................................................................................................................................................... 93 
Procedure ........................................................................................................................................................... 93 

PART D: DESIGN ...................................................................................................................................................... 95 
Purpose ............................................................................................................................................................... 95 
References .......................................................................................................................................................... 95 
Procedure ........................................................................................................................................................... 96 
Media ................................................................................................................................................................. 97 

CODE ....................................................................................................................................................................... 98 
Arduino IDE ....................................................................................................................................................... 98 
Processing – LiDAR Measurement Sketch ...................................................................................................... 103 
Processing – LiDAR Point Cloud .................................................................................................................... 108 

REFLECTION .......................................................................................................................................................... 117 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

vi 

PROJECT 2.7: MECHANICAL ............................................................................................................................ 118 

PURPOSE ................................................................................................................................................................ 118 
REFERENCES .......................................................................................................................................................... 118 
PROCEDURE ........................................................................................................................................................... 118 
MEDIA ................................................................................................................................................................... 121 
CODE ..................................................................................................................................................................... 122 
REFLECTION .......................................................................................................................................................... 123 

PROJECT 2.8 (ISP – LONG): THE IR NIXIE GECKO ..................................................................................... 124 

PURPOSE ................................................................................................................................................................ 127 
THEORY ................................................................................................................................................................. 128 
REFERENCES .......................................................................................................................................................... 128 
PROCEDURE ........................................................................................................................................................... 129 
MEDIA ................................................................................................................................................................... 140 
CODE ..................................................................................................................................................................... 141 

Nixie Clock ...................................................................................................................................................... 141 
IR Remote ........................................................................................................................................................ 148 

ICS4U ....................................................................................................................................................................... 150 

PROJECT 3.1: PB MACHINE .............................................................................................................................. 151 

PURPOSE ................................................................................................................................................................ 151 
REFERENCES .......................................................................................................................................................... 151 
PROCEDURE ........................................................................................................................................................... 151 
MEDIA ................................................................................................................................................................... 154 
REFLECTION .......................................................................................................................................................... 155 

PROJECT 3.2: CHUMP CODE, CLOCK, COUNTER ...................................................................................... 156 

PURPOSE ................................................................................................................................................................ 156 
THEORY ................................................................................................................................................................. 157 
PART A: THE CLOCK ............................................................................................................................................. 157 

Purpose ............................................................................................................................................................. 157 
References ........................................................................................................................................................ 157 
Procedure ......................................................................................................................................................... 158 
Media ............................................................................................................................................................... 159 

PART B: THE PROGRAM COUNTER ........................................................................................................................ 159 
Purpose ............................................................................................................................................................. 159 
References ........................................................................................................................................................ 159 
Procedure ......................................................................................................................................................... 159 
Media ............................................................................................................................................................... 160 

PART C: PROGRAM EEPROM ............................................................................................................................... 161 
Purpose ............................................................................................................................................................. 161 
References ........................................................................................................................................................ 161 
Procedure ......................................................................................................................................................... 161 
Media ............................................................................................................................................................... 162 

CODE STRUCTURE ................................................................................................................................................. 163 
Purpose ............................................................................................................................................................. 163 
References ........................................................................................................................................................ 163 
Procedure ......................................................................................................................................................... 163 
Media ............................................................................................................................................................... 165 

REFLECTION .......................................................................................................................................................... 166 

PROJECT 3.3: CHUMP FINAL ............................................................................................................................ 167 

PURPOSE ................................................................................................................................................................ 167 
THEORY ................................................................................................................................................................. 168 
CONTROL EEPROM .............................................................................................................................................. 170 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

vii 

Purpose ............................................................................................................................................................. 170 
References ........................................................................................................................................................ 170 
Procedure ......................................................................................................................................................... 170 

ARITHMETIC LOGIC UNIT (ALU)........................................................................................................................... 172 
Purpose ............................................................................................................................................................. 172 
References ........................................................................................................................................................ 172 
Procedure ......................................................................................................................................................... 172 
Media ............................................................................................................................................................... 175 

MULTIPLEXER ....................................................................................................................................................... 175 
Purpose ............................................................................................................................................................. 176 
References ........................................................................................................................................................ 176 
Procedure ......................................................................................................................................................... 176 

ACCUMULATOR ..................................................................................................................................................... 177 
Purpose ............................................................................................................................................................. 177 
References ........................................................................................................................................................ 177 
Procedure ......................................................................................................................................................... 177 

OTHER CHANGES ................................................................................................................................................... 179 
Purpose ............................................................................................................................................................. 179 
References ........................................................................................................................................................ 179 
Procedure ......................................................................................................................................................... 180 

HEX D FLIP-FLOPS ................................................................................................................................................ 181 
Purpose ............................................................................................................................................................. 181 
References ........................................................................................................................................................ 181 
Procedure ......................................................................................................................................................... 181 

RANDOM ACCESS MEMORY (RAM) ...................................................................................................................... 182 
Purpose ............................................................................................................................................................. 182 
References ........................................................................................................................................................ 182 
Procedure ......................................................................................................................................................... 182 

UPDATED CHUMPANESE CODE .............................................................................................................................. 184 
Purpose ............................................................................................................................................................. 184 
References ........................................................................................................................................................ 184 
Procedure ......................................................................................................................................................... 184 
Code (Arduino C) ............................................................................................................................................. 186 
Media ............................................................................................................................................................... 189 

REFLECTION .......................................................................................................................................................... 189 

PROJECT 3.4 (ISP – SHORT): EEG AND EMG MIND CONTROL HEADSET ........................................... 191 

PURPOSE ................................................................................................................................................................ 191 
THEORY ................................................................................................................................................................. 191 
EEG AND EMG ..................................................................................................................................................... 192 
HARDWARE ........................................................................................................................................................... 194 

References ........................................................................................................................................................ 194 
Procedure ......................................................................................................................................................... 194 

DESIGN .................................................................................................................................................................. 198 
MATHEMATICS ...................................................................................................................................................... 199 
MEDIA ................................................................................................................................................................... 200 
SOFTWARE ............................................................................................................................................................. 200 

ESP32 Serial .................................................................................................................................................... 200 
Graphing EEG (Processing) ............................................................................................................................. 201 
Neural Network Sketch (Processing) ............................................................................................................... 205 
DFT Example ................................................................................................................................................... 210 
FFT Example ................................................................................................................................................... 211 
FFT With Windowing ...................................................................................................................................... 213 

REFLECTION .......................................................................................................................................................... 215 

PROJECT 3.5: PIN CHANGE INTERRUPT ....................................................................................................... 216 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O, ICS3U, ICS4U – Introduction to Computers 

viii 

PURPOSE ................................................................................................................................................................ 216 
REFERENCES .......................................................................................................................................................... 216 
PROCEDURE ........................................................................................................................................................... 216 
CODE ..................................................................................................................................................................... 219 
MEDIA ................................................................................................................................................................... 222 
REFLECTION .......................................................................................................................................................... 222 

PROJECT 3.6: (ISP – MEDIUM): GIANT RGBW LED MATRIX .................................................................. 223 

PURPOSE ................................................................................................................................................................ 224 
REFERENCES .......................................................................................................................................................... 224 
PROCEDURE ........................................................................................................................................................... 224 
CODE ..................................................................................................................................................................... 231 

Arduino Nano ................................................................................................................................................... 231 
ATtiny84 .......................................................................................................................................................... 251 
Processing ........................................................................................................................................................ 257 

MEDIA ................................................................................................................................................................... 258 
REFLECTION .......................................................................................................................................................... 259 

PROJECT 3.7: TWAIN ADVANCED 2D ............................................................................................................. 260 

PURPOSE ................................................................................................................................................................ 260 
REFERENCE ........................................................................................................................................................... 260 
PROCEDURE ........................................................................................................................................................... 260 
MEDIA ................................................................................................................................................................... 264 
CODE ..................................................................................................................................................................... 264 
REFLECTION .......................................................................................................................................................... 266 

PROJECT 3.8: (ISP – LONG): IMPROVING THE GIANT RGBW LED MATRIX ...................................... 267 

PURPOSE ................................................................................................................................................................ 268 
REFERENCES .......................................................................................................................................................... 268 
PROCEDURE ........................................................................................................................................................... 268 
MEDIA ................................................................................................................................................................... 271 
CODE ..................................................................................................................................................................... 272 
REFLECTION .......................................................................................................................................................... 272 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICS2O 
DC Circuits 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

2 

Project 1.1: Voltage H-Bridge 

Purpose 

The purpose of this project is to develop the concept of using a potentiometer to divide voltage, 

therefore changing the direction of current. 

 

Reference 

https://learn.ssparkfun.com/tutorials/voltage-dividers/all 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#VoltageHBridge  

 

Procedure 

The concept of the voltage divider used in the 

circuit is simple to understand. It creates 

resistance on one side, thus restricting current to 

flow in only one direction because of Kirchhoff’s 

law. In other uses, the voltage divider can be used 

to control voltage using the formula: 

 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ·
𝑅2

𝑅1 + 𝑅2
  

 

There are two main components of this circuit, the potentiometer and the bicolor LED. The 

potentiometer has three leads, the A, B and C lead. The A and B leads are located on the edges 

while the C lead is in the middle. In the formula above, R2 represents the total resistance between 

the A and B lead and R1 represents the total resistance of the A to C lead on the potentiometer. 

Using only the A and B leads in a circuit transforms the potentiometer into a fixed resistor, while 

incorporating the C lead would turn it into a variable resistor which controls the resistance 

between A and C as well as B and C. When current travels through the C lead, it can flow from 

A to B or from B to A. Since Kirchhoff’s voltage law states that current flows from a high to low 

voltage, it will flow through the high voltage lead (the one with less resistance) to the low 

voltage lead (the one with higher resistance). When the potentiometer is positioned in the middle, 

current cannot flow because both leads have the same voltage and therefore cannot travel from a 

high to low potential. The bicolor LED is the other main component. It contains two LEDs 

arranged in opposite directions so that current can only flow though one LED. This way, the 

direction of current is shown by the color of the LED. 

 

In the voltage H-bridge, the potentiometer is used as variable resistor since the C lead is being 

utilized. It can now control the direction of current to light up the red or green LED. When the 

red LED is on, current is moving from the left to the right of the LED. When the green LED is 

on, current is moving from the right to the left of the LED. 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

1 10 k potentiometer 

2 470  fixed resistor 

1 5 mm bicolor LED 

1 Breadboard+ 

https://learn.ssparkfun.com/tutorials/voltage-dividers/all
http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#VoltageHBridge


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

3 

Media 

  

Current flows from left to right of the LED, 

turning on the red side 

 

Current flows from right to left of the LED, 

turning on the green side 

 

  

Schematic of a voltage divider Schematic of the voltage H-bridge 

 

YouTube video link: https://youtu.be/9rcGfo8x2Zw     

Reflection 

This concept of constructing a voltage H-bridge on a breadboard was very hard because it was 

difficult to understand. I had trouble building it and frequently asked for help from my peers. 

Eventually, I built the circuit correctly but still did not fully understand it. This impacted the time 

management of my DER as I had to rewrite it several times and replace diagrams with new and 

improved versions. However, I finally grasped the correct concept and used it to create my first 

project. It took a long time, mainly because I had not done it before. However, this will change in 

the future because I will strive to improve and plan for every DER that I will make in the history 

of this course. 

https://youtu.be/9rcGfo8x2Zw


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

4 

Project 1.2: The Capacitor Visualizer 

Purpose 

The purpose of this project is to demonstrate the use of capacitors as timers by discharging and 

charging them. 

 

Reference 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#capacitor 

 

Procedure 

The Capacitor Visualizer is a circuit that charges 

a capacitor and releases its energy for a set 

amount of time. Basically, the capacitor visualizer 

can be used as a timer and a short-term power 

source. 

 

The push button and the capacitor are the two 

new parts introduced in this circuit. The push 

button can come in two forms. One can be a push 

button normally open (PBNO) and the other can 

be a push button normally closed (PBNC). When 

input is applied to the PBNO, the circuit closes 

and current flows. However, when input is 

applied to the PBNC, the circuit opens and 

current cannot flow. In the capacitor visualizer, PBNO’s are used. After the push buttons comes 

the capacitor. To put it simply, capacitors have two plates that induce a charge on one another 

until the first plate is mostly charged up with electrons. Once this happens, resistance increases 

and current slows down. Capacitors also introduce two new units called the farad (F) and the tau 

(). The farad is the capacitance or how much charge a capacitor can hold and the tau is a 

measurement of time used to determine the charging time of capacitors. One tau is equal to the 

time it takes for a capacitor to charge to 63% of the source voltage and two taus is equal to the 

time it takes for a capacitor to charge to 63% of its remaining source voltage after the first tau. 

After 5 taus, the capacitor is essentially filled. In order to find a single tau of a capacitor, this 

equation is used ( is in seconds, R is in , and C is in F): 

 

  = 𝑅 • 𝐶 

 

To acquire 5 taus or the total charging time of the capacitor, simply multiply the answer by 5. As 

a means of proving the equation accurate, a test was conducted with different resistor-capacitor 

pairs and the results somewhat proved to line up with the equation (the battery source voltage 

measured 8.71V while doing the tests). 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

2 Momentary PBNO 

1 1000 F capacitor 

3 470  fixed resistor 

1 5 mm yellow LED 

1 5 mm bicolor LED 

1 Breadboard+ 

1 Capacitor visualizer PCB 

1 Female barrel jack 

1 Capacitor visualizer case 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#capacitor


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

5 

Resistance () Capacitance 

(F) 

Theoretical 5 

(s) 

Observed 5 (s) 

1000000 100 500 540 (to 6V) 

100000 100 50 120 (to 7V) 

470 1000 2.35 12 (to 7.65V) 

 

The circuit works by charging and discharging the capacitor using buttons to light up the bicolor 

LED. When input is applied to button 1, current flows clockwise turning on the red and yellow 

LED as the output. The red LED then dims slowly because the capacitor is filling up. Once input 

is released from button 1, current flows counter clockwise, releasing the built-up charge in the 

capacitor and turning on the green and yellow LED as the output for a brief moment. When input 

is applied to button 2, the capacitor drains quickly through the resistor, turning off the green and 

yellow LED as the output. If input is given to both buttons, current flows clockwise and the 

capacitor fills up halfway. Then it travels through button 2 and the red and yellow LEDs turn on 

without dimming.  

 

The capacitor visualizer was completed in three sections. First, the breadboard prototype was 

built using the parts listed in the first table. Once the prototype worked, a custom-made PCB was 

handed out to solder on the components. After everything was soldered on and it functioned 

properly, 3D printed cases were given out to wrap up the project in a neat and great-looking way. 

 

Media 

  

Current flows from positive to negative from 

the capacitor turning on the red side 

(breadboard) 

 

Current flows from negative to positive from 

the capacitor turning on the green side 

(breadboard) 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

6 

  

Current flows from positive to negative filling 

up the capacitor and dimming the red LED 

(PCB) 

 

The capacitor acts like a battery and drains its 

charge thorough the green LED (PCB) 

 

  

Schematic of the capacitor visualizer 

breadboard 

 

Schematic of the capacitor visualizer PCB 

 

 

YouTube video link: https://youtu.be/Y5R257CdEeA  

 

 

 

 

 

 

 

https://youtu.be/Y5R257CdEeA


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

7 

Reflection 

Compared to the voltage H-bridge, the capacitor visualizer was a lot easier to understand. I was 

off to a much better start and I was given a lot more time. In addition, I had a little more 

experience of how hardware class works from the voltage H-bridge and so I knew how to plan 

out my time effectively and finish it early. All went very well until I had to make the final 

product. I ran into a multitude of problems from assembling it the wrong way to the screw holes 

in the case not lining up. Because of this, I had to desolder my wires twice and then move the 

screw holes in the case using a soldering iron. Luckily, through hard work and patience, my 

project was saved. Overall, this whole turn of events taught me many lessons. Firstly, it taught 

me to plan, visualize and think about every step carefully. Secondly, it taught me the grit and 

perseverance to see a project through even when times are difficult. Lastly, it taught me that 

failure is experience and its ok to fail because you will always learn. For example, because of the 

whole fiasco, I have become an expert at desoldering and solder sucking, which will help me or 

others in the future when they mess up something in their projects. All in all, this was a great 

second project that I will learn from in the oncoming days of hardware. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

8 

Project 1.3: The Analog Oscillator (aka the Astable Multivibrator) 

Purpose 

The purpose of this circuit is to demonstrate the use of resistor-capacitor pairs in order to 

automate transistors for blinking LEDs. 

 

Reference 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#AnalogOscillator 

http://tinyurl.com/yf4ajl88  

http://tinyurl.com/yjxotwmn 

 

Theory 

In order for the analog oscillator to work, resistor-capacitor pairs are arranged in series that 

connect to the base pin of a transistor. The capacitor-resistor pairs take time to charge, allowing 

the transistor to be unsaturated after a certain time period because the base pin of a transistor has 

a certain voltage threshold between saturation and unsaturation. The capacitor then discharges 

and the pattern start over again. This produces a uniform wave or a duty cycle that repeats 

infinitely. 

 

Procedure 

The analog oscillator is a circuit that emits alternating 

light from a pair of LEDs. Basically, the transistor is 

used as an automated switch when current alternates in 

a set amount of time from the resistors and the 

capacitors. The transistor is the new part implemented 

into this circuit. It plays a crucial role in the 

automation of the circuit by using voltage to close or 

open it. The transistor has three leads. The emitter 

lead, the base lead, and the collector lead. When input 

is applied to the base pin in the form of voltage, the 

collector and emitter lead close or open, depending on 

the type of transistor which can come in two forms. A 

PNP transistor opens the collector and emitter lead 

when current flows and an NPN transistor closes them 

when current flows. These types can also be compared 

to the two types of push buttons, just with different inputs. A push button requires manual 

pressure to activate, while a transistor requires electricity and thus does not rely on human input; 

this changed the history of electronics forever. A PNP is like a push button normally closed 

(PBNC) since input opens the circuit and an NPN is like a push button normally open (PBNO) 

because input closes it.  

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

2 100 F capacitor 

2 470  fixed resistor 

2 10 k fixed resistor 

2 5 mm red LED 

2 5 mm blue LED 

2 2N3904 NPN transistor 

1 Breadboard+ 

1 Analog oscillator PCB 

1 Female barrel jack 

1 Analog oscillator case 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#AnalogOscillator
http://tinyurl.com/yf4ajl88
http://tinyurl.com/yjxotwmn


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

9 

The other two crucial but familiar components are the capacitor and the resistor. Their ability to 

be used as timers as shown in the capacitor visualizer make them responsible for the length 

duration of the oscillation. When the resistance or capacitance is high, charging the capacitor 

takes longer and therefore, the rate of oscillation is slower. When the resistance or capacitance is 

low, charging the capacitor is shorter, speeding up the oscillation. 

 

The analog oscillator circuit is a complicated circuit to understand. It functions by reversing 

current flow from the capacitor C2 discharging to the base pin of transistor Q1, reducing the 

potential difference below 0.65V which is the base-emitter cut-off voltage for both transistors. 

Once that happens, Q1 unsaturates and current from the collector to the emitter stops, turning off 

LED1. This causes current to charge through C1 and into the base of Q2, allowing current to 

flow from collector to emitter, turning on LED2 and allowing C2 to discharge. Once C1 charges 

completely, current reverses and it discharges through Q1, creating negative voltage across Q2, 

switching it to its cut off state. Now, C2 begins to charge, saturating Q1 and allowing LED1 to 

turn on and C1 to discharge. Once C2 fully charges, it begins to discharge and the pattern repeats 

indefinitely until the 9V battery is unplugged. If the rate of oscillation is too fast or slow for 

standards, resistance from R2 and R3 or capacitance from C1 and C2 would increase or decrease 

to slow down or speed up the rate of oscillation respectively. 

 

Theoretically, if the capacitors and resistors were exactly uniform, both transistors would 

saturate at the same time and no oscillation would occur but since there are biases to the 

components, only one will saturate at a time. Also, the schematic of the analog oscillator 

produces similar waves to a capacitor charging with a sharp cut-off instead of square waves. This 

is because current slows down when either C1 or C2 charges, leading to a fade out of LED1 or 

LED2 as shown in the capacitor visualizer. To produce a true digital square wave, both LEDs 

have to be connected to ground parallel to the capacitors so that the capacitors do not charge 

through the LEDs. 

 

Media 

  

The capacitor charges with the LED, 

producing blinking and fading lights in a 

curved wave 

The capacitor charges without the LED, 

producing non-fading and blinking lights in a 

square wave 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

10 

  

  

Schematic of the analog oscillator with fading 

LEDs (breadboard) 

 

Schematic of the analog oscillator with non-

fading LEDs (PCB) 

 

  

The oscillation wave of an LED for the analog 

oscillator with fading LEDs (breadboard) 

 

The oscillation wave of an LED for the analog 

oscillator with non-fading LEDs (PCB) 

YouTube video link: https://youtu.be/o5JJ0ilo2Eo  

 

Reflection 

Overall, this circuit was a hard one for me to fully comprehend. I was not entirely sure exactly 

how it works but I now believe I understand the fundamentals of it. On a positive note, I 

managed my time quite well. I started the project early and was able to solder my PCB and 

attach it to the case without trouble. However, figuring out the circuit was the hard and time-

consuming part. I had to change and revise my theories and explanations whenever something 

did not make sense in the Falstad circuit demonstration. Even when I did, I kept getting more 

confused but after a while, I finally understood the main concepts of the analog oscillator. In a 

way, this was beneficial to me because it taught me to think very deeply and logically about what 

is correct and what is wrong.  

  

https://youtu.be/o5JJ0ilo2Eo


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

11 

Project 1.4: The Counting Circuit 

 
 

Theory 

The counting circuit is one of the most basic fundamentals of digital electronics. In parts A and 

B, NAND logic is being used to take an analog signal and output it into a digital one. The output 

is a digital clock signal from an LED, resembling a square wave at a 50% duty cycle with its 

frequency and duration determined by the analog resistor-capacitor pairs. In the second part of 

the circuit, a plethora of integrated circuit or ICs for short are utilized to get the input of clock 

signals to be displayed on a 7-segment display. Firstly, the 4017 decade counter is used to slow 

down the clock signal from the NAND gate oscillator to 1/10th of its frequency. This clock signal 

from the square wave is inputted into a 4510 binary up/down counter that counts from zero to 

nine in binary. After that, the binary signals are fed into a 4511 binary decimal decoder which 

displays its count on a 7-segment display. Altogether, these parts form the final counting circuit. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

12 

Part A: Analog Input 

 
Purpose 

 

The purpose of this circuit is to get an introduction with the basic fundamentals of NAND logic 

using the NAND gate and a pull-up resistor configuration with a visible output. 

 

Reference 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting 

 

Procedure 

This main part in the circuit is the pull-up resistor 

configuration with its input feeding into a NAND 

gate. An LED is present with its cathode lead 

positioned at the output of the NAND gate and its 

anode lead positioned in the 9V power supply. At 

rest, the NAND gate outputs a low from two 

highs from the pull-up resistor. This allows 

current to flow from the anode to the cathode, 

turning the LED on. When input is applied to the 

PBNO, current is grounded because of the pull up 

resistor configuration and it produces two lows, outputting a high out of the NAND gate and into 

the LED. When an LED experiences a high on both leads, current cannot flow from the cathode 

to the anode and the LED turns off. At rest in a pull-up resistor configuration, current flows can 

only flow one way from the 10k resistor into the load. When the PBNO is pressed, current is 

grounded because that direct path to ground offers the least resistance. 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

1 10 k fixed resistor 

1 Momentary PBNO 

1 5 mm red LED 

1 4011 NAND gate IC 

1 Breadboard+ 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

13 

Media 

 
 

Current is grounded, inputting two lows then 

outputting a high 

Pull-up resistor configuration  

 

 

 

Part B: NAND Gate Oscillator (4011) 

 
 

 

Purpose 

The next stage of the counting circuit is the NAND gate oscillator, featuring the output of an 

oscillating LED at a certain frequency and duration using NAND logic. With the use of inputs 

from resistor-capacitor pairs and the forced digital outputs from NAND gates, a true square wave 

can be formed. 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

14 

Reference 

http://mail.rsgc.on.ca//~cdarcy/Datasheets/CD4011.pdf 

https://www.semiconductorstore.com/blog/2018/What-Are-Clock-Signals-in-Digital-Circuits-

and-How-Are-They-Produced-Symmetry-Blog/3322/ 

http://tinyurl.com/s6tfnop  

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting 

 

Procedure 

The basic functionality of a NAND gate consists 

of two inputs and its processing. Its inputs consist 

of a high or low, otherwise known as power or no 

power, and together with the processing, it can 

produce one output also of a high or low. The 

processing is explained fully in the truth table 

located to the right where 0 is low and 1 is high. 

Basically, if there is a low on either input lead 

then the output will be high and if both input leads 

experience a certain a high, the gate will output a 

low.  

 

NAND logic is a type of digital logic that takes in 

two analog signals, processing them as digital, 

and outputting one digital signal of high or low. 

For a NAND gate to convert an analog signal into 

a digital one, it has to measure the strength of the 

analog input signal. If the analog input signal is 0 

volts to less than ½ of the supply voltage, the 

NAND gate will process that as a low and if it is 

more than ½ of the source voltage, the NAND 

gate will process that as a high. This forms the 

concept of a NAND gate converting an analog 

input into a digital one. 

 

The signal that oscillates between high and low, 

also known as the clock signal, is the other crucial 

part of the circuit design. The clock signal can be 

compared to the tempo of a metronome, keeping the whole circuit in time. The clock signal can 

have different characteristics such as the time interval between each high and low, also known as 

frequency, and its duty cycle which controls the ratio of high and low. In the NAND gate 

oscillator, there are 2 resistor-capacitor pairs that are used as timers to control certain 

characteristics of the clock signal. RC1 controls the duration of the whole circuit by filling up the 

capacitor and using its charge to power the circuit for a finite amount of time. A diode is 

positioned before the capacitor to direct current towards the NAND gate instead of ground when 

the capacitor charges. RC2 controls the frequency, charging and discharging the capacitor as 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

1 10 k fixed resistor 

2 1 M fixed resistor 

1 470  fixed resistor 

1 Momentary PBNO 

1 5 mm red LED 

1 4011 NAND gate IC 

1 Diode 

1 10 F capacitor 

1 100 nF capacitor 

1 Breadboard+ 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4011BC.pdf
https://www.semiconductorstore.com/blog/2018/What-Are-Clock-Signals-in-Digital-Circuits-and-How-Are-They-Produced-Symmetry-Blog/3322/
https://www.semiconductorstore.com/blog/2018/What-Are-Clock-Signals-in-Digital-Circuits-and-How-Are-They-Produced-Symmetry-Blog/3322/
http://tinyurl.com/s6tfnop
http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

15 

shown before in the analog oscillator. The higher the capacitance or resistance in RC1, the longer 

the LED keeps on oscillating and the higher the capacitance or resistance in RC2, the lower the 

frequency of the oscillation as shown in the LED.  

 

The main part featured in the circuit is the 4011 

NAND gate IC. The IC contains four NAND 

gates arranged in a two by two formation with 

their outputs facing each other. This allows for the 

use of all four NAND gates as shown in the 

NAND gate oscillator. A detailed pinout diagram 

is shown to the right. In order to power the NAND 

gates, pin 14 must be connected to power and pin 

7 to ground. This is how the chip powers its 

outputs.  

 

 

 

 

 

 

 

 

 

 

Media 

  

The NAND gate oscillator without the 

oscillation 

 

Full setup of the NAND gate oscillator 

 

YouTube video link (parts A and B): https://youtu.be/Wj4ZiwTUSnk 

 

https://youtu.be/Wj4ZiwTUSnk


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

16 

Reflection 

This circuit was one of the most challenging but rewarding to understand and build. As the 

course slowly introduces more and more content, I was forced to think harder and deeper which 

is one of the most important experiences I have ever had. On my DER however, I was pressed 

for time because of a robotics competition on Saturday that ate up most of my filming day. This 

led to completing and filming the video on Friday and finishing everything on the counting 

circuit on Wednesday and Thursday. However, because of my limited time, I learnt how to focus 

very hard and complete things efficiently. Overall, a very busy and stressful but rewarding week. 

 

Part C: Decade Counter (4017) 

 
Purpose 

Part C includes a circuit that systematically lights up LEDs for a certain duration and frequency 

using the NAND gate oscillator and the 4017 decade counter. This effect makes it seem as 

though the circuit is counting. 

 

Reference 

http://mail.rsgc.on.ca//~cdarcy/Datasheets/CD4017.pdf 

https://electronicsclub.info/cmos.htm#4017 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting 

  

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4017.pdf
https://electronicsclub.info/cmos.htm#4017
http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

17 

Procedure 

The decade counter is a sixteen pin IC featuring 

eleven output pins labeled 0 to 9 for the first ten 

outputs and a divide by 10 pin for the last output. 

The whole pinout diagram can be viewed on the 

right. Output pins 0 to 9 sequentially emit a high 

each time a the high of a clock signal from an 

oscillator is inputted into the clock input pin. For 

example, if the NAND gate oscillator outputs 

three clock signals, output 0 will emit a high for 

the duration of the first clock signal, output 1 will 

emit a high for the duration of the second clock signal, and output 2 will emit a high for the 

duration of the third clock signal. If the oscillator produces more than ten clock signals, the 

decade counter will keep cycling through outputs 0 to 9 until it stops.  

 

The last output pin, the divide by 10, works the 

same way as the other output pins but with a 

lower frequency. When either output pins of 0 to 

4 are high, the divide by 10 pin will output high 

and when either output pins of 5 to 9 are high, the 

divide by 10 pin will output low. This equates to 

outputting a frequency 1/10th of the original clock 

signal’s frequency. In order to condition the input 

pins correctly so that no glitches occur, tie the 

disable and reset pin to ground for normal 

function. If the disable or reset pin is high, the IC 

will ignore incoming clock pulses and the count 

will stay constant. 

 

The decade counter doesn’t just count to ten. By 

utilizing the reset pin which resets the count to zero, the counting can be shortened. To utilize it, 

wire a certain output pin to the reset pin and now it will only count to the number at the output 

pin. For example, if output pin 7 is wired to the reset pin, only output pins 0 to 7 will 

sequentially emit a high because when pin 7 is high, it triggers the reset pin to start the count all 

over at 0. 

 

In the decade counter circuit, the clock signal from the NAND gate oscillator is fed into the input 

of the decade counter instead of an LED. Its output pins lead to 11 LED’s to produce an LED 

chaser where the 10 LED’s will light up one at a time to make it seem like it is counting. The last 

LED will light up when the half of the LED’s light up and turn off when the second half of the 

LED’s light up. The length and frequency of the clock signal can be adjusted by changing RC1 

and RC2 respectively as shown in the NAND gate oscillator. The frequency changes how fast the 

LED’s count while the duration affects the amount of time they count.  

 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

1 NAND gate oscillator 

1 5 mm green LED 

10 5 mm red LED 

1 4017 decade counter IC 

1 Breadboard+ 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

18 

Media 

  

The decade counter counting from zero to 

ten 

 

The decade counter only counting from zero to 

five 

 

Part D: Decimal Counting Binary Up/Down Counter (4510/4516) 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

19 

Purpose 

Part D of the counting circuit is a direct continuation of Part C with a 4516 decade up/down 

binary counter IC and a few changes. These changes along with the new IC produce a number in 

binary that counts up or down. 

 

Reference 

http://mail.rsgc.on.ca//~cdarcy/Datasheets/CD4510.pdf 

https://electronicsclub.info/cmos.htm#4510 

http://www.edutek.ltd.uk/Tutorial_Pages/BCD_Counter_4510.html 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting 

 

Procedure 

The 4516 functions like the 4017 decade counter 

by counting up to a sixteen instead of ten. 

However,  

unlike the 4017, the 4516 converts a clock signal 

into binary signals with the choice for it to count 

up or down. The 4516 also features a pre-set pin 

which allows it to count from any number up to 

sixteen or to count down from any number to 

zero. There are variants of the 4516 as well such 

as the 4510 which behaves exactly the same way 

but it only counts up to ten in binary. 

 

Altogether, the 4516 features 16 pins as shown on 

the right each with different instructions. Firstly, 

there are four output pins, sending out a 4-bit 

binary encoded signal using highs and lows each 

time a high from a clock signal is fed into the 

clock pin. Secondly, the present pin, wired to the 

four input pins, sets the IC to start at any number. 

For example, if input A and C are wired to the 

present pin, the IC would replace zero with five in 

binary as its base number. Thirdly, when the IC 

starts to count, it can either count up or down 

from its base number depending on the state of the 

up/down pin. If the up/down pin is low, the IC 

will count down and vice versa. Lastly, there are the carry out and carry in pins used for 

cascading multiple 4516’s.  

 

 

 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack (PB 

machine) 

1 NAND gate oscillator 

4 5 mm red LED 

1 4017 decade counter IC 

1 4516 binary up/down counter 

IC 

1 Breadboard+ 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4510.pdf
https://electronicsclub.info/cmos.htm#4510
http://www.edutek.ltd.uk/Tutorial_Pages/BCD_Counter_4510.html
http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

20 

In the binary up/down counter circuit, a 4516 is used, which is a 4-bit counter counting to 

sixteen, instead of the 4510, which only count to ten. Four LED’s are connected to the four 

outputs to represent each bit. When the LED is lit, that represents a 1 while when the LED is off, 

it represents a 0. Below is a conversion table is provided to translate binary into decimal as well 

as other numeric systems. 

 

 

 

Media 

  

The 4516 binary up/down counter The 4516 binary up/down counter with a pre-

set of eight 

 

Numerical System Translator Table 

Decimal Binary Octal Hexadecimal 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

21 

Part E: Binary Counting Decimal Decoder (4511) 

Purpose 

In order to convert binary outputs from the 4510 to a readable decimal number, 4511 or a binary 

counting decoder is needed. 

 

Reference 

http://mail.rsgc.on.ca//~cdarcy/Datasheets/CD4511.pdf 

https://electronicsclub.info/cmos.htm#4511 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting 

 

Procedure 

The 4511 converts a binary number into outputs 

that correspond to lighting up the numbers on a 

7-segment display. These binary outputs are 

wired to inputs A, B, C and D of the 4511. Each 

binary number input produces a pattern of highs 

from outputs a to f that form numbers zero to 

nine. For example, if input A is high while all the 

other inputs are low, that would be a 0001 in 

binary and outputs b and c will be high which 

lights up 1 on the 7-segment display. The three 

other pins are necessary for the function of the 7-

segment display. The display test lights up all of 

the LED’s on the 7-segment display when 

grounded which ensures that the 7-segment display is fully functioning. The blank input turns off 

all of the LED’s when grounded and the store pins stores a number on the 4511 so that the binary 

input is ignored. The blank input pin should be high and the store pin should be low for normal 

operation. The last pin called the store pin stores a number on the display when the pin is high. 

When this IC is used in a circuit, a 4510 or similar IC that counts up to nine is needed to ensure 

proper counting. If a binary number higher than 9 is fed into the inputs, the output pins will 

produce a low until the count reaches a number from zero to nine. 

 

 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4511.pdf
https://electronicsclub.info/cmos.htm#4511
http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

22 

 

Part F: Seven-Segment Display 

 
Purpose 

With the edition of the 7-segment display, the counting circuit is complete by providing a 

readable number from the 4511 decoder. 

 

Reference 

http://mail.rsgc.on.ca//~cdarcy/Datasheets/7SegmentDisplay.pdf 

http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting 

 

4511 Output Table 

7-segment display 

number  

A B C D E F G 

0 1 1 1 1 1 1 0 

1 0 1 1 0 0 0 0 

2 1 1 0 1 1 0 1 

3 1 1 1 1 0 0 1 

4 0 1 1 0 0 1 1 

5 1 0 1 1 0 1 1 

6 0 0 1 1 1 1 1 

7 1 1 1 0 0 0 0 

8 1 1 1 1 1 1 1 

9 1 1 1 0 0 1 1 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/7SegmentDisplay.pdf
http://darcy.rsgc.on.ca/ACES/TEL3M/1920/TasksFall.html#counting


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

23 

Procedure 

The 7-segment display contains 7 LEDs labeled a 

to f arranged in a figure eight and one more as a 

decimal point. This labelling makes wiring the 7-

segment display with the 4511 easy since wires 

just connect to their respective letters. Each LED 

is arranged in parallel to produce uniform 

brightness when the LEDs form different 

numbers. With this figure eight arrangement, 

numbers 0 to 9 can be formed by lighting up 

certain sections. For example, to form a 1, 

sections b and c should be lit up. 

 

There are two types of 7-segment displays. The 

common anode and the common cathode. The 

common anode means power comes in from one 

pin and each LED is grounded while common 

cathode takes in power from every LED and is 

grounded through one pin. When using 7-segment 

displays, separate resistors are needed for each 

LED segment to produce uniform brightness for 

different numbers. If separate resistors are not 

used, a number with more high LEDs would be 

dimmer than a number with less.  

 

In the final part of the counting circuit, a common 

cathode 7-segment display is used with resistors 

feeding from LEDs a to f to the corresponding output pins of the 4511. The 4511 produces 

outputs that light up certain LED segments to form numbers which corresponds to each clock 

pulse. Also, the 4516 was replaced with the 4510 since the 7-segment display can only count 

from 0 to 9. 

 

For further use of the counting circuit, more 7-segments displays paired with 4511s and 4510s 

can be used to form double- or triple-digit counting circuits by chaining the carry out pin of one 

4510 to the carry in pin of the other 4510. This way, the clock signal is 1/10th less than the 

previous clock signal for every chained 4510. 

 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack 

1 NAND gate oscillator 

1 4017 decade counter IC 

1 4510 binary up/down counter 

IC 

1 4511 binary decimal decoder 

IC 

1 CC 7-segment display 

7 330Ω fixed resistor 

1 Breadboard+ 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

24 

Media 

  

The full counting circuit at rest 

 

A double-digit counting circuit at rest 

 

  
Common cathode configuration Common anode configuration 

 

YouTube video link: https://youtu.be/r2jyUD1W5HM   

 

Reflection 

This circuit was a fun one to build. It certainly challenged me in following instructions in pinout 

diagrams of all the integrated circuits. However, my time management improved and I was able 

to complete the full circuit without any stress. As a challenge and a way to knock off some spare 

time, I built a double counting circuit which was a very special moment for me. I was also able 

to understand all of the components, how they all work together and how to wire them correctly. 

One problem that perplexed me for a while was when my 7-segment display pins were very dim. 

For a long time, I kept rewiring things and making sure my components were functioning 

properly until I realized that my battery was low on power. This taught me to always check your 

battery level with a voltmeter. Overall, this circuit was a wonderful circuit to build and I had a lot 

of fun with it. 

  

https://youtu.be/r2jyUD1W5HM


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

25 

Project 1.5 (ISP): The Analog Traffic Light 

 
 

 

 

 

 

 

 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

26 

 

 The Analog Traffic Light Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 9V DC power jack 

1 Adafruit full-sized perma protoboard 

1 Adafruit half-sized perma protoboard 

1 3D printed analog traffic light case 

1 4017 decade counter IC 

2 555 timer IC 

1 4049 hex NOT gate IC 

1 40110 up/down counter and LED driver IC 

1 CC 7-segment display 

1 10 mm red LED 

1 10 mm yellow LED 

1 10 mm green LED 

1 5 mm bicolor LED (triple pin) 

8 Rectifier diode 

1 220 Ω fixed resistor 

7 330  fixed resistor 

3 470 Ω fixed resistor 

1 1 kΩ fixed resistor 

3 4.7 kΩ resistor 

1 10 k fixed resistor 

1 100 k fixed resistor 

1 470 F capacitor 

1 100 F capacitor 

1 2N3904 NPN transistor 

 

Purpose 

The purpose of this final project is to utilize and combine all of the skills learnt in this course to 

achieve the goal of designing a completely analog traffic light with a pedestrian signal and a 

countdown timer. 

 

Theory 

The analog traffic light, unlike conventional ones, is one that is run with no programming 

involved. To achieve this, a plethora of IC’s, resistors, capacitors, and transistors work in tandem 

with each other to replicate a fully functioning traffic light. The 4017 decade counter, drives the 

main red, green, and yellow lights, the 4049 hex NOT gate IC drives the bi-color LED and 

provides maximum power efficiency, a 555 timer oscillates the bi-color LED, and an up/down 

counter LED display driver 40110 IC powers the countdown timer. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

27 

Part A: The Base Traffic Light 

 
Purpose 

The purpose of this circuit it to designate a timing period to red, yellow, and green LED’s to 

form the basis of a traffic light. 

 

Reference 

https://www.youtube.com/watch?v=i0SNb__dkYI 

  

https://www.youtube.com/watch?v=i0SNb__dkYI


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

28 

Procedure 

In order to obtain a repeated pattern of red, green, 

and yellow LED’s, a 4017-decade counter is 

utilized. However, this repeated pattern has a 

uniform time interval for each output pin, which 

would result in the red and green light having the 

same on time as the yellow light. To solve this 

issue, multiple output pins of the 4017 are 

connected to each LED to produce a flash 

sequence. Basically, each output pin connected to 

an LED lengthens the duration of it being on. In 

the analog traffic light, this sequence is set to five 

output pins for the red LED, four output pins to 

the green LED, and the remaining one for the 

yellow LED to mimic the real-life version of a 

traffic light. But if wires are connected to each 

LED, current from the output will travel through 

one of the output pins to ground so to prevent 

that, each output pin connected to each other 

needs to have a diode. The divide by ten pin, which is equivalent to five output pins, is connected 

to the red LED to save on diodes. 

 

The 555 timer is comprised of a voltage divider with three five kiloohm resistors, hence the 

name 555. In addition to that, there are two 

comparators, a flip flop, a discharge transistor, 

and an output as shown in the corresponding 

diagram. At first, the output of the two 

comparators are 0 and 1 from the top down. The 

flip flop will flip these outputs to be 1 and 0 and 

the output stage will invert the bottom flip flop 

output. In this case, the bottom output from the 

flip flop is 0 so the output stage will become a 1.  

 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack (PB 

machine) 

1 4017 decade counter IC 

1 555 timer IC 

1 10 mm red LED 

1 10 mm yellow LED 

1 10 mm green LED 

1 220 Ω fixed resistor 

1 470 Ω fixed resistor 

1 1 kΩ fixed resistor 

3 4.7 kΩ resistor 

4 Rectifier diode 

1 470 F capacitor 

1 Breadboard+ 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

29 

The 555 timer is used to input a square wave into 

the decade counter. This timer can be easily 

configured to produce a square wave with varying 

frequency and duty cycle using resistor capacitor 

pairs in the astable mode configuration to the 

right. To increase the frequency of the square 

wave, decrease the capacitance of C and the 

resistance of R1 and to increase the duty cycle, 

increase the resistance of R2 which will also 

decrease the frequency by a touch.  

 

 

 

 

 

 

 

When voltage is applied to the power pin, the capacitor charges up through R1 and R2 and 

voltage is fed through the trigger and threshold pins to the comparators. The more the capacitor 

charges up, the more voltage is experienced on the two comparators. When a voltage higher than 

1/3 of the source voltage is on the trigger pin, the bottom comparator switches its output to 0 but 

it does not change the output of the flip flop so no change is made to the output. When a voltage 

higher than 2/3 of the source voltage is on the threshold pin, the comparator switches its output 

to 1. Now the flip flop has an input of 1 and 0 from top to bottom and because of its logic, these 

outputs get flipped and a 1 is outputted to the output section which is then inverted to 0. There is 

also a discharge NPN transistor that is connected to the output of the bottom flip flop. When that 

bottom output becomes high, the transistor saturates and the capacitor begins to drain through it. 

 

Once the capacitor starts to drain through R2, voltage on the threshold pin will dip below 2/3 of 

the source voltage and the top comparator will output a 0 which will not change the output of the 

flip flop as shown previously. It is only when voltage across the capacitor is 1/3 less than the 

source voltage that the bottom comparator changes its output to a 1 and so the flip flop outputs a 

0. This cuts off the NPN transistor, allowing the capacitor to charge again and the output stages 

outputs a 1. This cycle of the 555 repeats indefinitely until power is turned off.  

 

In the analog traffic light, a resistance of 4.7 kiloohms as R1, a resistance of 5.7 kiloohms R2, 

and a capacitance of 470 microfarads is used to produce a square wave of around five seconds in 

length which is quite close to the duration of a yellow light in a real traffic light. This timing 

would make a red light 25 seconds, a green light is 20 seconds and a yellow light is five seconds. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

30 

Media 

  

The base traffic light on a breadboard The setup of a 555 timer 

 

Part B: The Pedestrian Signal 

 
 

Purpose 

The purpose of this circuit is to implement a pedestrian signal so the traffic light is useful for 

both vehicles and people. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

31 

Reference 

http://tinyurl.com/sjdd3ld  

http://lednique.com/gpio-tricks/1-gpio-dual-led-common-cathode/ 

https://electronicsclub.info/cmos.htm#4049 

 

Procedure 

A pedestrian signal from a traffic light has only 

two modes which are stop and go. Using a bicolor 

LED, a simple pedestrian signal can be created 

where red is stop and green is go. In a real-life 

traffic light, the pedestrian signal tells the 

pedestrians to stop when there is a red or yellow 

light and go when there is a green light. In order 

to do that, a three-pin bi color LED with a 

common cathode and an inverter in between the 

two LED’s is needed. 

 

 

 

A three-pin bi color LED is a little different from 

the usual two pin bi color LED. Its schematic is 

shown on the right. In order for it to work, the 

middle pin must be grounded and input on one pin 

will turn on its respective LED. If both pins are 

equally high, the LED will appear orange. A 

resistor can be put between the middle pin and 

ground for voltages below 5 volts but for high 

voltages, each LED should have its own resistor 

to prevent reverse biasing the LEDs.  

 

An inverter or a NOT gate is a type of logic where 

the input is the opposite of the output. For 

example, if the input is 0 the output is 1 and vice 

versa. The symbol for an inverter is shown on the 

right. The components of an inverter are very 

simple. All that is needed is a pull-up resistor 

configuration with an NPN transistor replacing 

the push button. Now the base of the NPN 

transistor with a current limiting resistor becomes the input while the output of the pull-up 

resistor becomes the inverter output.  

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack (PB 

machine) 

1 Base traffic light 

1 4049 hex NOT gate IC 

1 5 mm bicolor LED (triple pin) 

1 470  fixed resistor 

1 Breadboard+ 

1 Half breadboard 

http://tinyurl.com/sjdd3ld
http://lednique.com/gpio-tricks/1-gpio-dual-led-common-cathode/
https://electronicsclub.info/cmos.htm#4049


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

32 

In the analog traffic light, a 4049 IC chip is used 

which houses six inverters. When there is a high 

voltage on an inverter, the green LED will turn on 

and when there is no voltage at all, the red LED 

will turn on. The green LED should be on when a 

green light is showing and the red LED should be 

on otherwise. In order to do that, the input signal 

of the green light is wired to the input of the 

inverter. That way, when the green light is on, the 

inverter will output a low, turning off the red LED 

while the green LED is turned on from the green 

light input signal. When a red or yellow light is 

showing, there is no input signal from the green 

light which turns off the green LED and outputs a 

high from the inverter, turning on the red LED.  

 

 

 

 

 

 

When testing the circuit, the green light of the 

pedestrian signal would be quite dim. To ensure 

maximum brightness for it, the input of the green 

light signal is wired through two inverters forming 

a buffer gate. A buffer gate, as shown on the right, 

simply outputs the signal inputted into it. For 

example, if the input is 1, the output is 1. 

However, an analog high voltage such as five 

volts can be put through the buffer gate and it would register that input as high which will output 

a high but at nine volts instead of five. This would solve the minor diode voltage drop problem. 

It would also solve another problem. Since gates only require voltage, all output current can flow 

through the green LED traffic light ensuring its maximum brightness. The green LED pedestrian 

signal would also get maximum brightness since all current from the buffer gate would travel 

through it. If the buffer gate was not there, the output current from the decade counter would 

have to be divided among the two green lights, dimming them both. 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

33 

Media 

  

The base traffic light with the pedestrian 

signal 

The schematic of driving a three-pin bi-color 

LED 

 

Part C: The Oscillating Pedestrian Signal 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

34 

Purpose 

The purpose of this circuit is replicate the flashing go sign before a yellow light to alert 

pedestrians to finish or stop crossing the road 

 

Procedure 

To replicate the flash, the green part of the bi-

color LED will oscillate on and off before a 

yellow light. To create the flashing sequence, 

another 555 timer in astable mode is needed to 

form the square wave. This square wave will then 

turn on and off the green light of the bicolor LED 

so to do that, the square wave is fed into the base 

of an NPN transistor with a current limiting 

resistor. The NPN transistor is then put in 

between the output of the inverter and the input of 

the green light of the bicolor LED. Now, the 

transistor acts like a solid-state switch; however, 

the green light of the pedestrian signal will not be 

on until the square wave is fed into the base of the 

transistor. To fix that, an inverter is used from the 

4049 IC to turn the NPN into a solid state PBNC which will only open when current from the 

square wave is on the base pin.  

 

Now, power must be fed into the 555 timer but if power is directly applied, the 555 timer will 

keep producing a square wave and therefore keep the LED flashing. To solve this problem, 

power is provided from output 8 of the decade counter which is the output right before the 

yellow light output. This way, the LED oscillation will start right before a yellow light. 

However, the green light would always become dim when the oscillation started because the 

output of the decade counter has a max output current. Therefore, two inverters are needed to 

form another buffer gate so that all output current from the decade counter can flow into the 

green LED. 

 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack  

1 Base traffic light with 

pedestrian signal 

1 555 timer IC 

1 2N3904 NPN transistor 

2 470  fixed resistor 

1 2.2 k fixed resistor 

1 100 k fixed resistor 

1 100 F capacitor 

1 Breadboard+ 

1 Half breadboard 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

35 

Media 

 

 

The traffic light with an oscillating 

pedestrian signal 

The schematic of driving an oscillating 

pedestrian signal 

 

Part D: The Countdown Timer 

 

Purpose 

The purpose of the final circuit addition is to improve on the oscillating pedestrian signal to let 

pedestrians and vehicles know exactly when a yellow light is about to happen. 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

36 

Reference 

http://www.ti.com/lit/ds/symlink/cd40110b.pdf 

 

Procedure 

For the analog traffic light, a single digit number 

counting down from nine was chosen to simplify 

the circuit instead of the normal double-digits. To 

achieve the countdown, a 40110 IC is used to 

drive a 7-segment display. This handy IC is an 

LED driver with an up/down counter feature so 

when a clock signal is inputted into the IC, it will 

begin to send out a combination of outputs from a 

to g that form numbers counting up, if the clock 

signal is inputted into the clock up pin, or down, 

if the clock signal is inputted into the clock down 

pin, on a 7-segment display. The chip is similar to 

a 4510 paired with a 4511; however, no pre-set is 

included but since the analog traffic light counts 

down from 9, no pre-set is needed.  

 

 

There are three other pins that play a crucial role 

in the proper function of the chip. Firstly, there is 

the reset pin. When a high is present on that pin, 

the 7-segment display and the internal counter of 

the IC will reset to zero. Secondly, there is the 

latch enable pin. This pin will freeze the number 

displayed on the 7-segment display but the 

internal counter will still keep counting. Lastly, 

there is a toggle enable pin which needs to be 

grounded in order for the internal counting circuit 

to work. For normal functioning, all three pins 

should be grounded to avoid the pins picking up any stray pulses. The two remaining pins are 

toggle and carry and they are used to cascade multiple counters for double or triple digit 

displays. The full pinout of the 40110 IC is shown on the right and an output table as well as a 

truth table is shown below.  

 

Parts Table 

Quantity Description 

1 9V DC alkaline battery 

1 ACES power jack  

1 Base traffic light with the 

oscillating pedestrian signal 

1 40110 up/down counter and 

LED driver IC 

1 CC 7-segment display 

4 Rectifier diode 

7 330  fixed resistor 

1 10 k fixed resistor 

1 Breadboard+ 

1 Half breadboard 

http://www.ti.com/lit/ds/symlink/cd40110b.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

37 

 

 
 

In the analog traffic light, the clock signal from the second 555 timer is inputted into the clock 

down pin. This way, the count will only start when the pedestrian signal starts oscillating which 

is right before a yellow light. Also, since the clock signal is inputted into the clock down pin, the 

counter will start to count down from 9. However, the length of the square wave has to stop 

when the counter reaches 0 otherwise the count will count from 9 again. To prevent that, a 

capacitance of 100 microfarads, a resistance of 470 ohms for R1 and a resistance of 2670 ohms 

for R2 is needed for the second 555 timer.  

 

 

 

 

 

40110 Output Table 

7-segment display 

number  

A B C D E F G 

0 1 1 1 1 1 1 0 

1 0 1 1 0 0 0 0 

2 1 1 0 1 1 0 1 

3 1 1 1 1 0 0 1 

4 0 1 1 0 0 1 1 

5 1 0 1 1 0 1 1 

6 1 0 1 1 1 1 1 

7 1 1 1 0 0 0 0 

8 1 1 1 1 1 1 1 

9 1 1 1 1 0 1 1 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

38 

To prevent any potential glitches, the reset pin should be tied high when it is not counting to be 

sure the counter stays at zero until it needs to count. To do that, four more diodes are needed and 

a ten kiloohm resistor. The resistor ties the reset pin to ground and it prevents a short when 

current is in the reset pin. The four diodes are for preventing current from travelling through the 

LED’s and into ground, keeping them on. One diode is for the red light, one diode is for the 

yellow light, and two are for the green light. The reason a second diode is needed is to prevent 

the reset from staying high when the countdown is supposed to happen. In order to do this, 

outputs five six and seven need to travel through one more diode to light the green LED and the 

reset pin is tied right before the second diode so that only outputs five six and seven can render it 

high. This prevents current from output eight, the output that initiates the countdown, travelling 

to the reset pin.  

 

Media 

  

The traffic light with the addition of the 

countdown timer 

 

A simple circuit that counts up or down using 

the 40110 IC 

  

The soldered version of the analog traffic 

light 

The 3D printed case for the analog traffic light 

 

YouTube video link: https://youtu.be/O-rvWUiZsPw 

https://youtu.be/O-rvWUiZsPw


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS2O – Introduction to Computers 

39 

Reflection 

This half year was one of the most life-changing experiences that I have had. I feel that I have 

come a long way from a proud gamer, in the beginning of the year, to a proud junior ACE that 

knows what it feels like to really push yourself and do the best you can. Honestly, when the first 

DER submission came around, I was really nervous because I didn’t want famously get 

“roasted” so I quit gaming for a while and worked non-stop Friday and Saturday which is what 

led me to a perfect submission. That first perfect submission inspired me to continue on working 

even harder for the rest of the reports and to prioritize work over procrastination. This has led me 

through some very stressful paths (such as completing this final project) but it paid off and I owe 

most of it to you for pushing everyone to be the best version of themselves. Thank you for a 

great year. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICS3U 
AVR Foundations 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

41 

 

Project 2.1: The Traffic Light 

Purpose 

The purpose of this project is to combine hardware and software to create a traffic light and to 

obtain a basic understanding of the Arduino and its functions in order to lay the foundation of 

efficient coding to use in the rest of this year. 

 

Reference 

https://learn.sparkfun.com/tutorials/what-is-an-arduino/all 

https://www.arduino.cc/en/Tutorial/Foundations/Memory 

https://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328P.pdf 

https://crashcourseforarduino.libsyn.com/the-arduino-development-toolchain-how-it-all-gets-

done 

 

Procedure 

The Arduino platform is a fundamental introduction to the application of software to hardware. It 

allows the user to replicate the complex circuits that would take up several breadboards and bags 

of components only using a few lines of code. It simplifies the process of engineering and allows 

more complex creation feats, but, to achieve those, learning about the foundations, functions, and 

commands of Arduino is key. To do this, a simple working traffic light is programmed using 

very basic code. 

 

An Arduino board is the combination of a 

programmable microcontroller with a plethora of 

functions and an integrated development 

environment (IDE) where instructions are 

fabricated to preform those functions. It is 

essentially a mix of hardware and software. 

Commands and code are written in the IDE and 

sent out in machine code, telling the 

microcontroller what functions to perform. For 

this project, the Arduino Uno board is utilized. 

https://learn.sparkfun.com/tutorials/what-is-an-arduino/all
https://www.arduino.cc/en/Tutorial/Foundations/Memory
https://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328P.pdf
https://crashcourseforarduino.libsyn.com/the-arduino-development-toolchain-how-it-all-gets-done
https://crashcourseforarduino.libsyn.com/the-arduino-development-toolchain-how-it-all-gets-done


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

42 

 

The hardware aspect of the Arduino Uno board is 

shown in the form of the 8-bit ATmega328P 

microcontroller. This microcontroller is a 28 to 32 

pin IC featuring numerous general purpose I/O 

pins used for a variety of purposes such as PWM 

(pulse width modulation), counting and 

comparing paired with memory to store the 

commands inputted through software.  

 

 

 

 

The memory is divided up into three parts: flash 

memory, SRAM, and EEPROM. Flash memory, 

containing 32KB, stores the whole file or sketch 

of code, SRAM, containing 2KB, stores variables 

and finally, EEPROM, containing 1KB, is where 

long-term information regarding the inputted code 

is stored. Flash memory and EEPROM is non-

volatile, signifying that the information written to 

it are not lost when power is disconnected while 

SRAM is volatile meaning information is lost 

upon power loss. This is mainly because SRAM is 

made for speed in order for the code to run 

quickly.  

 

On the flip side, the software aspect comes in the 

form of the Arduino IDE editor, a development 

software application where code is written. This 

development software employs the use of the 

C++ language to create tasks and functions that 

the Arduino board carries out. When those tasks 

and functions have been fabricated in the form of 

code, it uploaded through a series of steps and 

processes called the Arduino toolchain, consisting 

of the Arduino IDE editor, the compiler, 

AVRDUDE (AVR Downloader and Uploader) 

and the bootloader. The Arduino IDE editor uploads the C++ code with the push of the upload 

button to the complier called AVR-GCC, which checks for errors and assembles it into machine 

code in the form of a .hex file. This .hex file is transported to the board through AVRDUDE and 

the bootloader writes the code onto the MCU. 

 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

43 

 

The Schaffer Traffic Light PCB is a simple circuit 

consisting of a red, yellow and green LED with a  

resistor near ground to limit the brightness. The 

LED’s have their own male header pin to turn 

them on which all link up to the resistor and 

ground pin. These pins are used in conjunction 

with the Arduino’s digital female headers to 

individually turn the LEDs on, simulating a traffic 

light.  

 

 

 

The code used emulate the traffic light is simple 

but crucial to future coding practices. Unsigned 

integers, meaning positive whole numbers, of 

specific sizes such as 8-bit and 16-bit were used to 

increase the codes efficiency and reduce the 

amount of space taken up in the Arduino’s 

memory. The same goes for bit shifting which 

saved lots of processing power as opposed to simply dividing. As a final touch, and to make the 

code more user friendly, the red LED pin was linked to all the others so that the user only needs 

to change one variable to move the traffic light around.  

 

Media 

 

 

The Schaffer Traffic Light PCB in effect 

with the Arduino UNO 

The schematic of the Schaffer Traffic Light 

PCB 

 

 

YouTube video link: https://youtu.be/fSRU5WQWoZU  

  

Parts Table 

Quantity Description 

1 Computer 

1 USB type A to USB type B 

cable 

1 Arduino UNO 

1 Schaffer Traffic Light PCB 

1 10 mm red LED 

1 10 mm yellow LED 

1 10 mm green LED 

1 220  fixed resistor 

1 4 right angle male header pins 

https://youtu.be/fSRU5WQWoZU


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

44 

 

Code 

 
 

Reflection 

Overall, the traffic light was a simple but crucial first project to get started with the Arduino. 

Without this introductory submission, a lot of the aspects regarding efficient coding would have 

been missed and overlooked. It was definitely hard getting back into the swing of things; I went 

from a relaxing summer where I would game all night long to working hard on my DER all 

afternoon and late into the night. However, I know things will get a lot easier and less stressful as 

it did in my grade 10 year, though, things will be a lot different with the circumstances of 

COVID-19. I guess we just have to wait and see what lies ahead of us later in the year.  

  

// PROJECT    : Traffic Light 

// PURPOSE    : To create code that controls the Schaffer Traffic Light PCB 

// DATE       : Sep 23, 2020 

// MCU        : 328p/84/85 

// STATUS     : Working 

// NOTES      : None 

// REFERENCES : http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html 

 

uint8_t redPin = 11;              //red LED pin 

uint8_t yellowPin = redPin - 1;   //yellow LED pin 

uint8_t greenPin = redPin - 2;    //green LED pin 

uint8_t groundPin = redPin - 3;   //ground pin 

 

uint16_t redGreenDelay = 5000;    //time regarding pauses of red and green 

 

void setup() {    //function only runs once 

 

  //pins are set to output 

  pinMode(redPin, OUTPUT);                     

  pinMode(yellowPin, OUTPUT); 

  pinMode(greenPin, OUTPUT); 

  pinMode(groundPin, OUTPUT); 

 

  digitalWrite(groundPin, LOW);   //pin set to 0V (ground) 

} 

 

void loop() {   //function loops infinitely 

   

  //traffic light sequence: 

  lightSequence(redPin, redGreenDelay);             

  lightSequence(greenPin, redGreenDelay); 

  lightSequence(yellowPin, redGreenDelay >> 2);    //On for 1/4 of red and green 

} 

 

void lightSequence(uint8_t led, uint16_t delayTime) { 

  //function with parameters for each traffic light LED 

   

  digitalWrite(led, HIGH);      //traffic light LED turns on 

  delay(delayTime);             //pause 

  digitalWrite(led, LOW);       //traffic light LED turns off 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

45 

 

Project 2.2: Persistence of Vision 

Purpose 

The purpose of this project is to use software, hardware, and the persistence of vision concept to 

effectively and efficiently light up numbers and characters on a dual 14 pin alphanumeric display 

 

Reference 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#PoV 

https://lastminuteengineers.com/74hc595-shift-register-arduino-tutorial/ 

https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/ 

https://www.futurelearn.com/courses/explore-animation/0/steps/12222 

 

Procedure 

The persistence of vision project contains many 

new concepts introduced in the course. It 

combines, shift registers, the dual 14 pin 

alphanumeric display, the persistence of vision 

effect and circuit, the use of EEPROM, and more 

efficient coding techniques.  

 

The ICs used in the function of the alphanumeric 

display is the newly introduced shift register. It’s 

job is to expand the number of I/O (input/output) 

pins available for use. For example, to control a 

20 LED bar graph, you would normally need 20 

output pins on the Arduino to control each 

individual LED. This setup is inefficient because 

most Arduino boards do not have this many pins, 

and even if they did, 20 I/O pins would be wasted 

on some simple LEDs. This inefficient use and 

lack of I/O pins is solved through the employment of shift registers, expanding the I/O pins to 

your needs while only taking up 3 I/O pins on an Arduino board.  

 

The specific and very ubiquitous shift register 

utilized in the persistence of vision is the 

74HC595N, commonly known as the 595 shift 

register. This IC expands the number of the 

Arduino’s output pins through a chain of eight D 

flip flops tied to a shared clock pin, equating to 8 

outputs to 1 595 shift register. 

Parts Table 

Quantity Description 

1 Computer 

1 USB type A to USB type B 

cable 

1 Arduino UNO 

1 Common cathode 

alphanumeric display 

4 330  isolated resistor 

network 

2 74HC595N shift register 

1 3904 NPN transistor 

1 3906 PNP transistor 

1 10 k fixed resistor 

2 1 k fixed resistor 

1 Rectifier diode 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#PoV
https://lastminuteengineers.com/74hc595-shift-register-arduino-tutorial/
https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/
https://www.futurelearn.com/courses/explore-animation/0/steps/12222


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

46 

 

This clock pin is the first of three important pins used in the IC. It determines when the outputs 

are shown, so when a rising edge is detected on the clock pin, the data in the form of highs and 

lows stored on the D flip flops will be shifted out to the right by one bit. This is where the IC 

gets its name from. For example, if the current data reads 00000010 and a high is sent to the 

clock pin, the current outputs will read 00000001.  

 

The second pin is the data pin which tells what binary value to store on the flip flops through a 

high for 1 and a low for 0 on the pin. If a high is presented on the data pin when a rising edge is 

on the clock pin, the data will be shifted to the right with the addition of a 1 stored on the first 

flip flop or most significant bit. To put things visually, the current data, 00000010, will be 

transformed into 10000001 when a high is present on the data pin. Otherwise, when the a low is 

present, the data, 00000010 will equate to 00000001 when the clock pin detects a high. The 

combination of highs and lows on the data pin and a constant square wave on the clock pin can 

then control which outputs pins are high or low.  

 

To send the data on D flip flops onto the output pins, the final significant pin called the latch pin 

copies the data on the flip flops into the storage/latch register, overwriting any data that was 

previously programmed. The data in the storage/latch register is then displayed when the output 

enable pin (OE) is grounded. Through the utilization of these three significant pins, three I/O 

pins on the Arduino can be exchanged for eight I/O pins. Other pins of the shift register play a 

more simple and minor role. The shift register clear pin (SRCLR) clears the data from the flip 

flops and storage/latch while the QH’ pin connects to the data pin of another shift register to daisy 

chain them and create more output pins. These output pins are represented as QA to QH with QA 

representing the least significant bit and QH signifying the most significant bit. 

 

To integrate the 595 shift register with the Arduino IDE, the shiftOut function is used to program 

a shift register with ease. The syntax of the function is shown here:  

 

shiftOut(dataPin, clockPin, bitOrder, value); 

 

The first two parameters mentioned above are the data pin and clock pin. They are defined I/O 

pin numbers on the Arduino board that are wired to the data pin and clock pin on the 595. The 

third parameter, bitOrder, tells the shift register what order to shift out the bits. MSBFIRST shifts 

out the bits to the right, starting from the most significant bit and ending with the least. 

LSBFIRST switches the order of bits from least significant to most, basically, mirroring the 

former. The last parameter, value, determines the state of the output pins. Accepted values are 8-

bit unsigned integers that can be displayed in binary, octal, decimal, or hex. The accepted values 

are processed into binary and presented on the output pins when the latch is set high. For 

example, defining the value as 240, using MSBFIRST, will present the state of the output pins as 

1110000 (240 in binary) where QH is the most significant and QA is the least. Applying the same 

value but switching out MSBFIRST for LSBFIRST mirrors the output to 0000111.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

47 

 

To display part of this project comes in the form 

of the KWA-541CPGB common cathode dual 14 

pin alphanumeric display. 14 leds for each display 

allows all upper and lower case characters as well 

as most symbols to be presented. As shown in the 

pinout, input pins of both displays are wired 

together while ground pins are separate. This 

creates the problem of one display emulating the 

other since input pins are wired together. 

However, through a phenomenon known as 

persistence of vision, different characters on 

separate displays can be presented even through 

they share a common input.  

 

Persistence of vision is an omnipresent optical 

illusion that the human eye experiences when 

watching animations. Its an omnipresent 

phenomenon extending back in history to the 

phenakitoscope to the modern day screens that 

humans spend most their day looking at. Human 

eyes can only process 10 to 12 images per second. 

Therefore, when flipping through or displaying an 

animation that cycles images faster than 10 to 12 

images per second, the human eye will perceive a 

series of still images as one continuous moving 

image. The same concept is applied to the dual 14 

pin alphanumeric display where the separate 

ground pins of each display alternate between 

sinking current which rapidly switches the state between the two displays. This rate of on and off 

is extended beyond 12 switches per second to seem like both displays are on. Doing this allows 

different characters to be displayed; when switching between ground pins, inputs would switch 

as well to light up a different section of LED’s, alternating between characters of the two 

displays. To quickly sink current from both ground pins, an oscillating circuit resembling the 

analog oscillator is used with a square wave input from an Arduino.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

48 

 

EEPROM is used in this project to store character 

segment values in binary to send to the shift 

registers which then light up letters and numbers 

on the alphanumeric display. These segment 

values of all letters and numbers are stored in 

addresses of the EEPROM which can be read 

from. This read function works in tandem with the 

shiftOut function to produce characters on the 

alphanumeric display. As mentioned before, 

EEPROM is non-volitle; it only needs to be 

programmed once and it will remember the data 

forever unless it is overwritten with new data. 

This trait is extremely useful as it can save loads 

of processing power and only needs to be run once. The full use of EEPROM with the segment 

maps can be viewed in the code section below. 

 

To extend one’s knowledge and interest of the persistence of vision, two additional features 

extending the creativity was included. The first, after taking inspiration from Jacob Buchan’s 

own POV project, was the use of scrambling letters to achieve a level of flair. This was achieved 

by iterating through all letters at a rapid pace to make the code appear as if it scrambles. The 

second feature included was the programming of a hexadecimal to decimal game to better 

understand it. This was accomplished through presenting random hex values in an array, 

converting that hex value into a decimal number for the user to guess and then creating a score. 

Also a game duration was included by including the millis() function. More details of the 

code are explained in the code section. 

 

Media 

 
 

The Persistence of Vision project prototyped 

on a breadboard 

The schematic of the oscillation circuit 

 

YouTube video link: https://youtu.be/4KbFu0teXwE  

 

https://youtu.be/4KbFu0teXwE


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

49 

 

Code 

EEPROM 

 

// PROJECT  :Write14SegUpperCaseCharacters 

// PURPOSE  :Writes a lookup table of 14 segments (word) for the uppercase ASCII 

//          :characters to EEPROM  

// COURSE   :ICS3U 

// AUTHOR   :Xander Chin 

// DATE     :2020 10 23 

// MCU      :328p 

// STATUS   :Working 

// REFERENCE:http://darcy.rsgc.on.ca/ACES/TEI3M/1920/Tasks.html#PoV 

 

#include <EEPROM.h>       //requires the support of this Arduino library 

 

// Define the 14-Segment Uppercase Letter LookUp Table... 

uint16_t letterSegmentMap[] = { 

  //ABCDEFGGHJKLMN__ :Segment order 

  0b1110111100000000,  //A  

  0b1111000101001000,  //B  

  0b1001110000000000,  //C  

  0b1111000001001000,  //D  

  0b1001111000000000,  //E  

  0b1000111000000000,  //F  

  0b1011110100000000,  //G  

  0b0110111100000000,  //H  

  0b1001000001001000,  //I  

  0b0111100000000000,  //J  

  0b0000111000100100,  //K        

  0b0001110000000000,  //L  

  0b0110110010100000,  //M  

  0b0110110010000100,  //N  

  0b1111110000000000,  //O  

  0b1100111100000000,  //P  

  0b1111110000000100,  //Q  

  0b1100111100000100,  //R  

  0b1011000110000000,  //S  

  0b1000000001001000,  //T  

  0b0111110000000000,  //U  

  0b0000110000110000,  //V  

  0b0110110000010100,  //W  

  0b0000000010110100,  //X  

  0b0100011100001000,  //Y  

  0b1001000000110000   //Z 

}; 

 

uint16_t numberSegmentMap[] = { 

  //ABCDEFGGHJKLMN__ :Segment order 

  0b1111110000110000,   //0 

  0b0110000000100000,   //1   

  0b1101000100010000,   //2 

  0b1111000100000000,   //3 

  0b0110011100000000,   //4 

  0b1011011100000000,   //5 

  0b1011111100000000,   //6 

  0b1110000000000000,   //7 

  0b1111111100000000,   //8 

  0b1111011100000000    //9   

}; 

 

uint8_t letterSizeMap = sizeof(letterSegmentMap) >> 1;  //number of entries in the LUT letters 

uint8_t numberSizeMap = sizeof(numberSegmentMap) >> 1;  //number of entries in the LUT numbers 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

50 

 

 
  

void setup() { 

  Serial.begin(9600);       //requires the support of the Serial Monitor 

  while (!Serial);          //pause while the Serial monitor initializes itself 

   

  Serial.println("Note: Highest accessible EEPROM Address: " + String(E2END, DEC)); 

 

  //flash the LUT to EEPROM...(once, since EEPROM is non-volatile) 

  //Note: The ASCII value is used as the EEPROM address for efficiency   

  for (uint8_t x = 0; x <= letterSizeMap; x++) {  //iterate through the LUT array for letters 

     

    EEPROM.write('A' + x << 1, lowByte(letterSegmentMap[x])); //   segment data to EEPROM 

    EEPROM.write(('A' + x << 1) + 1, highByte(letterSegmentMap[x])); 

  } 

 

  for (uint8_t y = 0; y <= numberSizeMap; y++) {  //iterate through the LUT array for numbers 

 

    EEPROM.write('0' + y << 1, lowByte(numberSegmentMap[y])); //   segment data to EEPROM 

    EEPROM.write(('0' + y << 1) + 1, highByte(numberSegmentMap[y]));     

  } 

     

  //Echo the first few to the Serial Monitor for confirmation... 

  for (uint8_t ch = '0'; ch <= '4'; ch++) { 

    Serial.print(EEPROM.read((ch << 1) + 1), BIN); 

    Serial.println(EEPROM.read(ch << 1), BIN); 

  } 

   

} 

 

void loop() { 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

51 

 

Main 

 

// PROJECT    : Persistence of Vision (with hexadecimal game) 

// PURPOSE    : To exploit POV to present characters on an alphanumeric display 

// DATE       : Oct 24, 2020 

// MCU        : 328p/84/85 

// STATUS     : Working 

// NOTES      : Includes a hexadecimal to decimal game 

// REFERENCES : http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#PoV 

 

#include <EEPROM.h>               //includes segment map of characters 

 

//regular code variables 

#define clockPin 3 

#define dataPin 5 

#define latchPin 4 

#define squareWave 2 

#define enablePin 6 

#define scrambleDuriation 15      //how long each letter is shown (ms) 

 

uint8_t ch1;                      //left character 

uint8_t ch2;                      //right character 

uint32_t split;                   //general purpose split 

uint32_t gameSplit;               //split for hex game 

 

String entry;                     //for entering two character 

bool hex = false;                 //keeps hex game separate 

 

 

//HEX game variables 

#define countdownDuriation 750    //duriation of countdown for hex game (ms) 

#define gameDuriation 60000       //how long the game lasts for (ms) 

#define ggDuriation 7000          //duriation of GG after hex game (ms) 

   

uint16_t hexNumbers[] =           //characters allowed in hex game 

 {'0', '1', '2', '3',  

  '4', '5', '6', '7',  

  '8', '9', 'A', 'B',  

  'C', 'D', 'E', 'F'}; 

   

uint8_t r1;                       //1st array container 

uint8_t r2;                       //2nd array container 

uint8_t guess;                    //guess of hex game in decimal 

uint8_t score = 0;                //score of hex game 

 

void setup() { 

   

  Serial.begin(74880);     //begin serial (needs to be fast for smoothness)       

  Serial.setTimeout(1);    //speeds up serial response time  

  while (!Serial);         //waits for serial to initalize  

 

  //initialize pins for output 

  pinMode(clockPin, OUTPUT); 

  pinMode(dataPin, OUTPUT); 

  pinMode(latchPin, OUTPUT); 

  pinMode(squareWave, OUTPUT); 

  pinMode(enablePin, OUTPUT); 

 

  //enables outputs 

  digitalWrite(enablePin, HIGH); 

 

  //initializes to certain characters, not random characters 

  ch1 = 'H'; 

  ch2 = 'I'; 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

52 

 

  

 

  //serial instructions: 

  Serial.println("Enter any two numbers or letters"); 

  Serial.println("Type 'play' to practice your hexadecimal skills"); 

} 

 

void loop() { 

        

  while (Serial.available() && hex == false) {    //while there is something in 

serial                

     

    entry = Serial.readString();    //entry = inputted string                   

    entry.toUpperCase();            //converts letters to upper 

case                             

 

    ch1 = entry.charAt(0);          //sets variable to first 

character                          

    ch2 = entry.charAt(1);          //sets variable to second character                        

     

    //serial confirmation 

    Serial.println("\n" + String("you typed: ") + entry + "\n"); 

 

    if(entry == "PLAY") { 

 

      Serial.println("Starting hex game!");   //serial confirmation       

      hex = true;                             //blocks sections of code when hex game = on     

      startHexGame();                           

    } 

     

    //serial instructions: 

    Serial.println("Enter any two numbers or letters"); 

    Serial.println("Type 'play' to practice your hexadecimal skills");     

  } 

   

  while (!Serial.available() && hex == false) {   //while there is nothing in serial 

 

    displayCharacters(ch1, ch2); 

  } 

 

  //if there is no hex game 

  if(hex == false) { 

     

    scrambleEffect();  

  } 

 

   

} 

 

//starts countdown for hex game 

void startHexGame() { 

 

  //countdown until start of hex game 

  for(ch2 = '3'; ch2 >= '1'; ch2--) {   //EEPROM value decreases to show ajacent characters 

 

    split = millis(); 

    while(millis() - split < countdownDuriation) {    //displays characters for duriation 

 

      ch1 = '0'; 

      displayCharacters(ch1, ch2); 

    } 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

53 

 

 

   

  split = millis(); 

  while(millis() - split < countdownDuriation) {      //displays characters for duriation 

 

    ch1 = 'G'; ch2 = 'O'; 

     

    displayCharacters(ch1, ch2); 

  }  

 

  scrambleEffect(); 

  hexGame(); 

} 

 

//code for hex game 

void hexGame() { 

 

  randomSeed(analogRead(A0));   //random seed from a floating pin 

   

  r1 = random(15);              //calls number from seed (0 to 15) 

  r2 = random(15);              //calls number from seed (0 to 15) 

  ch1 = hexNumbers[r1];         //character equals allowed hex vaule 

  ch2 = hexNumbers[r2];         //character equlas allowed hex vaule 

   

  gameSplit = millis(); 

  while(millis() - gameSplit < gameDuriation) {   //while duration of game 

         

    while(Serial.available()) {         //while there is something in serial         

      guess = Serial.parseInt(); 

   

      if(guess == (r1 << 4) + r2) {     //if guess equals hex number in decimal 

        Serial.println("correct!");     //serial confirmation 

         

        scrambleEffect(); 

        score++;                        //increase score by 1 

 

        r1 = random(15);                //calls number from seed (0 to 15) 

        r2 = random(15);                //calls number from seed (0 to 15) 

        ch1 = hexNumbers[r1];           //character equals allowed hex vaule 

        ch2 = hexNumbers[r2];           //character equlas allowed hex vaule 

      }  

 

      else {                            //if guess is not correct        

        Serial.println("incorrect!");   //serial confirmation       

      } 

    } 

 

    //while there is nothing in serial and game duriation is active 

    while(!Serial.available() && (millis() - gameSplit < gameDuriation)) { 

      displayCharacters(ch1, ch2); 

    } 

  } 

 

  //serial confirmation 

  Serial.println("\n" + String("game over!")); 

  Serial.println("score: " + String(score) + "\n"); 

 

  split = millis(); 

  while(millis() - split < ggDuriation) {   //duration of GG 

 

    ch1 = 'G'; ch2 = 'G';                   //sets characters to GG (good game) 

    displayCharacters(ch1, ch2);             

  } 

 

  scrambleEffect(); 

  ch1 = 'H'; ch2 = 'I';             //displays characters after hex game                

  hex = false;                      //allows access to regular code 

 

  while(Serial.available()) {       //clears characters entered in serial 

       Serial.read(); 

  } 

} 

 

//displays characters 

void displayCharacters(uint8_t ch1, uint8_t ch2) { 

 

  //first character (leftmost): 

  digitalWrite(enablePin, LOW);     //prevents ghosting of segments 

  digitalWrite(latchPin, LOW); 

  //read from EEPROM LUT 

  shiftOut(dataPin, clockPin, LSBFIRST, EEPROM.read(ch1 << 1)); 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

54 

 

Reflection 

 

This was, by far, my most stressful, my most time consuming, and my most invested project that 

I have done so far. I have been working on this since Thursday night, non-stop until now. I spent 

most of my time coding this because I wanted to gain a deeper understanding of this project and 

a produce something creative, which I have successfully accomplished through a scramble effect 

and a hexadecimal game. Though, the perfectionist part of me felt that it fell short. I found that 

the quality of my DER and video, the two things I prided myself the most in, suffered; my 

submission is not where I want it to be. I did not have time to edit my video to further clarify the 

points I made and I feel like my DER is missing a few key aspects. Right now its 15 miniutes till 

midnight. From when this project first got introduced, I wanted everything about it to be perfect, 

similar to the rest of my projects. But, through this submission, I have learnt that humans aren’t 

perfect and we make mistakes, however, we can improve. I am definetly going to reflect on this 

project and build off from it from this point forward, always trying to learn from past mistakes. I 

am truly sorry that this DER was not up to standards.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

55 

 

Project 2.3: Ask UNO 

Purpose 

The purpose of this project is to demonstrate hardware wired communication and processing 

between two Arduinos to emulate a wired smarthome device 

 

Reference 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#AskUNO 

https://www.explainthatstuff.com/lcdtv.html 

https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-

receiver-transmitter-uart/ 

 

Procedure 

The main part of this project is demonstrated 

using the very common liquid crystal display or 

LCD for short used in TV’s, computer monitors, 

calculators, and digital watches. LCD’s work a lot 

differently than traditional LED displays. In LCD 

screens, there are individual pixels that can block 

or let light through from a backlight, allowing 

characters to be formed on the screen. These 

pixels have polarized filters, allowing light to pass 

through when rotated one way but blocking all 

light when rotated another way. To rotate these 

pixels, liquid crystals are used, hence the name liquid crystal display. These liquid crystals have 

disctinct forms pertaining to electricity being applied. If no current is applied, the crystal 

assumes a twisted structure, blocking the back light and when current is applied, the crystal 

straightens out and lets light pass through. This is how letters, numbers and characters are 

formed on an LCD display. 

 

The specific LCD display implemented in the 

project is a 16x2 LCD screen, with each block 

containing a 5x8 rectangle of pixels. There are a 

total of 16 pins to utilize all of its functions 

however, only 6 will be controlled through a 

microcontroller to display information in 4-bit 

mode. 4-bit mode basically shifts out data 4-bits at 

a time using 4 of the DB pins while 8-bit mode, requiring all DB pins, shifts out data 8-bits at a 

time, speeding up transmission. A pinout of the device is shown above. On the software side, an 

LCD library containing fuctions to drive the LCD screen is used. This library simplifies and 

shortens code, allowing easy programming of the LCD display using straightforward functions. 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#AskUNO
https://www.explainthatstuff.com/lcdtv.html
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

56 

 

Communication is essential, especially nowadays. It is what allowed us to understand each other 

and to work together to contruct the civilization that humans live in today and now it plays a role 

in keeping individuals and societies connected through the communication protocols of 

technology. There are two main ways of communication in devices: wired communication, 

involving physical links for communication and wirelss communication, involving non-physical 

ways. 

 

In this project, data is sent using wired 

communication in the form of universal 

asynchronous reception and transmission (UART) 

to other serial devices like computers or other 

MCUs. In many Arduinos like the NANO and 

UNO there is only one built in UART channel 

which are pins 0 for Rx (receiving) and 1 for Tx 

(transmitting), reserved for reading to and writing 

from the serial monitor. Unfortunatley, this leaves 

no space for more UART connections between 

other MCUs as one UART channel can only support communication between one serial device. 

This is fixed by putting the software serial library into action, which converts specified digital 

I/O pins into Rx and Tx communicator pins for more communication. In order to establish a link 

between two MCUs, the Rx pins connects with the Tx pins of opposite MCUs and a common 

ground is shared.  

 

Combining these new concepts leads to the Ask 

UNO project where two Arduino devices, the  

NANO and UNO, use UART communication 

with each other to solve arithmetic inputted by the 

user in the serial monitor. The answer to the 

specified arithmetic expression is then displayed 

on LCD screens. The NANO acts as the host, 

taking in data from the serial monitor and relaying 

it to the UNO assistant, which processes the data 

and displays an answer on the LCD screen. This 

is efficiently accomplished through the use of 

modular programming.  

  

Parts Table 

Quantity Description 

1 Computer 

1 9V power source 

1 USB A to USB B cable 

1 USB A to USB C cable 

1 Arduino UNO 

1 Arduino NANO 

2 16  2 LCD display 

1 LCD Appliance PCB 

1 330  fixed resistor 

2 10 k potentiometers 

1 2 right angle male header pins 

1 6 right angle male header pins 

1 2 right angle female headers 

1 16  1 straight female header 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

57 

 

Modular programming is described as code that is 

separated into parts which can be used 

interchangeably to preform something specific. It 

breaks down complex code into simpler more 

manageable chunks called functions in order to 

increase organization, flexibility, and variety in 

use. Functions take in a value, process it, and 

outputs another value, so breaking down code into 

functions allows the programmer to select certain 

functions for use. For example, the LCD and 

software serial library use functions and modular 

programming so that certain aspects of the library can be used in an organized way. The same 

idea is implemented in the project code sketches which can be viewed in the code section. 

 

The basic task of this project involves inputting expressions consisting of a?b where a and b are 

single digit operands and ? is the operator consisting of addition, subtraction, multiplication, 

division and modulus. The output is then expressed. To extend this basic task, the code was 

modified to allow multi-digit operands, a safety net was introduced to defend against undefined 

answers such as division by 0, malformed expressions are not sent to the UNO, and more 

operators such as the bitwise operators and random functions were made available to use.  

 

Media 

  

Setup of the NANO host and the UNO 

assistant 

The LCD appliance PCB providing easy and 

organized usage 

 

YouTube video link: https://youtu.be/IRZPm464c-M 

 

  

https://youtu.be/IRZPm464c-M


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

58 

 

Code 

NANO 

 
 

// PROJECT    : Ask UNO - NANO Host 

// PURPOSE    : LCD displays and UART Communication 

// DATE       : November 21, 2020 

// MCU        : 328p/84/85 

// STATUS     : Working 

// NOTES      : None 

// REFERENCES : http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#AskUNO 

 

#include <SoftwareSerial.h>   //Software serial library 

SoftwareSerial chat(8, 9);    // RX, TX 

 

#include <LiquidCrystal.h>    //LCD Library 

#define LCD_COLUMNS 16        //Number of columns in Character LCD screen 

#define LCD_ROWS    2         //Number of rows on LCD screen 

 

//LCD setup 

uint8_t RS = 7, EN = 6, D4 = 5, D5 = 4, D6 = 3, D7 = 2; 

LiquidCrystal lcd(RS, EN, D4, D5, D6, D7); 

 

uint32_t timeElapsed; 

#define timeOutTime 5000    //in (ms) 

 

void setup() { 

  lcd.begin(LCD_COLUMNS, LCD_ROWS);   //initialize LCD screen 

   

  displayData("NANO: Equation?", "Waiting..."); 

   

  chat.begin(9600);         //initialize chat 

  chat.setTimeout(10);      //speed up chat 

  while (!chat); 

   

  Serial.begin(9600);       //initialize serial 

  Serial.setTimeout(10);    //speed up serial 

  while (!Serial); 

 

  tutorial(); 

} 

 

void loop() { 

  while(Serial.available() > 0) {   //while there is something in serial 

    timeElapsed = millis(); 

     

    String equation = Serial.readString(); 

 

    //find where the operator position is 

    uint8_t pos = 0;    

    while(pos < equation.length()) {    

      if(isOperator(equation.charAt(pos))) break; 

      pos++; 

    } 

 

    //separate operands 

    String stringA = equation.substring(0, pos); 

    String stringB = equation.substring(pos+1, equation.length()); 

    uint32_t intA = equation.substring(0, pos).toInt(); 

    uint32_t intB = equation.substring(pos+1, equation.length()).toInt(); 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

59 

 

 
  

    //defend against malformed expressions: 

    //note: operands cannot be negative numbers 

    if(!stringA.equals((String)intA) || !stringB.equals((String)intB)) { 

      displayData("Malformed:", equation);  

      break; 

    } 

 

    //defend against min > max in random function 

    if(equation.charAt(pos) == 'r' && intA > intB) { 

      displayData("Malformed:", "a<b when using r"); 

      break; 

    } 

   

    chat.print(equation);                       //sends data to the UNO    

    displayData("NANO: Equation:", equation);   //confirmation of equation 

  } 

 

  //displays after a certain amount of time has passed 

  if(millis() - timeElapsed > timeOutTime) { 

    displayData("NANO: Equation?", "Waiting..."); 

  } 

} 

 

//function to display data on LCD: 

void displayData(String s0, String s1) { 

 

  lcd.setCursor(0, 0);                   //cursor at first row and column 

  lcd.print(s0 + "                ");    //clears first row and prints s0 

  lcd.setCursor(0, 1);                   //cursor at second row first column 

  lcd.print(s1 + "                ");    //clears second row and prints s1  

} 

 

//if character is an operator 

boolean isOperator(char ch) { 

 

  String operators = "+-*/%&<>^|r";    //allowed operators 

  return operators.indexOf(ch) >= 0;    //returns true or false 

} 

 

//how to operate ask UNO 

void tutorial() { 

 

  //F macro used to save RAM 

  Serial.println(F("Welcome to Ask UNO! Type an equation in the form: a?b")); 

  Serial.println(F("The answer will be displayed on the UNO LCD \n")); 

  Serial.println(F("a = any positive number")); 

  Serial.println(F("b = any positive number \n")); 

  Serial.println(F("Allowed equations:")); 

  Serial.println(F("a+b \t addition")); 

  Serial.println(F("a-b \t subtraction")); 

  Serial.println(F("a*b \t multiplecation")); 

  Serial.println(F("a/b \t division"));  

  Serial.println(F("a%b \t modulus")); 

  Serial.println(F("a<b \t bitshift left")); 

  Serial.println(F("a>b \t bitshift right")); 

  Serial.println(F("a&b \t bitwise AND")); 

  Serial.println(F("a^b \t bitwise XOR")); 

  Serial.println(F("a|b \t bitwise OR"));  

  Serial.print(F("arb \t random number between a and b. ")); 

  Serial.println(F("a needs to be less than or equal to b \n")); 

  Serial.print(F("Arduino operators: ")); 

  Serial.println(F("https://www.arduino.cc/reference/en/#structure")); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

60 

 

UNO 

 

// PROJECT    : Ask UNO - UNO Assistant 

// PURPOSE    : LCD displays and UART Communication 

// DATE       : November 21, 2020 

// MCU        : 328p/84/85 

// STATUS     : Working 

// NOTES      : None 

// REFERENCES : http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#AskUNO 

 

#include <SoftwareSerial.h>    //Software serial library   

SoftwareSerial chat(8, 9);     //Rx Tx 

 

#include <LiquidCrystal.h>     //LCD Library 

#define LCD_COLUMNS 16         //Number of columns in Character LCD screen 

#define LCD_ROWS    2          //Number of rows on LCD screen 

 

//LCD setup 

uint8_t RS = 7, EN = 6, D4 = 5, D5 = 4, D6 = 3, D7 = 2; 

LiquidCrystal lcd(RS, EN, D4, D5, D6, D7); 

 

char mathOp;    //needed in different functions 

 

uint32_t timeElapsed; 

#define timeOutTime 5000    //in (ms) 

 

void setup() { 

  //initialize LCD 

  lcd.begin(LCD_COLUMNS, LCD_ROWS);  

  displayData("UNO Assistant", "Waiting..."); 

   

  chat.begin(9600);             //initialize chat 

  chat.setTimeout(10);          //speed up chat 

  while(!chat);            

} 

 

void loop() { 

  while(chat.available()) {   //while there is something in chat UART      

    timeElapsed = millis(); 

            

    String equation = chat.readString();      

     

    //find where operator position is 

    uint8_t pos = 0;    

    while(pos < equation.length()) {    

      if(isOperator(equation.charAt(pos))) { 

        mathOp = equation.charAt(pos); 

        break; 

      } 

      pos++; 

    } 

 

    //separate operands 

    uint32_t operandA = (equation.substring(0, pos)).toInt(); 

    uint32_t operandB = (equation.substring(pos+1, equation.length())).toInt(); 

 

    //defend against division by 0 

    if(mathOp == '/' && operandB == 0) { 

      displayData("UNO Assistant", "ERROR"); 

      break; 

    } 

 

    //convert to string then display 

    String answer = (String)solve(operandA, mathOp, operandB); 

    displayData(equation + "=", answer); 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

61 

 

 
  

 

  //displays after a certain amount of time has passed 

  if(millis() - timeElapsed > timeOutTime) { 

    displayData("UNO Assistant", "Waiting..."); 

  } 

} 

 

boolean isOperator(char ch) { 

 

  String operators = "+-*/%&<>^|r";    //allowed operators 

  return operators.indexOf(ch) >= 0;    //returns true or false 

} 

 

//function to display data on LCD 

void displayData(String s0, String s1) { 

  lcd.setCursor(0, 0);                  //cursor at first row and column 

  lcd.print(s0 + "                ");   //clears first row and prints s0 

  lcd.setCursor(0, 1);                  //cursor at first row and second column 

  lcd.print(s1 + "                ");   //clears second row and prints s1 

} 

 

//returns number value a?b  

int32_t solve(uint32_t a, char mathOperator, uint32_t b) {   

 

  randomSeed(analogRead(A0));   //for random function 

   

  //case values = ASCII values 

  switch(mathOperator) { 

    case 37: return a%b; break; 

    case 38: return a&b; break; 

    case 42: return a*b; break; 

    case 43: return a+b; break; 

    case 45: return a-b; break; 

    case 47: return a/b; break; 

    case 60: return a<<b; break; 

    case 62: return a>>b; break; 

    case 94: return a^b; break; 

    case 114: return random(a, b+1); break; 

    case 124: return a|b; break;    

     

    default: break; 

  }       

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

62 

 

Reflection 

Compared to the persistence of vision project, the ask UNO project felt a lot easier and less 

stressful. I knew how to organize my time better and I learned from my mistakes, which allowed 

me to fully look over and finish the project. However, there were some stressful moments during 

this weekend which is normal, as this course is very challenging and takes a toll on the brain, 

especially if you have been working non-stop since Friday morning. Though, I do believe as time 

goes on, these stressful moments will disappear as I get used to the curriculum. Overall, I really 

enjoyed programming, learning, and playing with the LCD screens as they are so ubiquitous in 

everyday life. It was also cool to learn the parts of an LCD screen and how the science behind it 

worked and communication between Arduino’s was a great thing to experience as it is 

implemented in most everyday devices and it opens up the doors to many types of new and 

creative projects. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

63 

 

Project 2.4.1: Breadboard ATmega328P 

 

Purpose 

The purpose of this project is to develop an in-system programmable device to extend the 

versatility and use of creating circuits and projects. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#standalone 

https://www.oled-info.com/oled-introduction 

https://www.oled-info.com/oled-technology 

https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/ 

https://www.electronics-tutorials.ws/oscillator/crystal.html 

https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoISP 

https://www.arduino.cc/en/reference/SPI 

  

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#standalone
https://www.oled-info.com/oled-introduction
https://www.oled-info.com/oled-technology
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
https://www.electronics-tutorials.ws/oscillator/crystal.html
https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoISP
https://www.arduino.cc/en/reference/SPI


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

64 

 

Procedure 

The in-system programmable device is a simple 

555 timer frequency reader that displays  

information on an oscillating signal from the 

timer. This information shown are the high, low 

and total time of the wave, the duty cycle, and the 

frequency which is relayed to an OLED display 

using I2C communication. Also, a real time LED 

displays when the wave is low or high. This is 

very useful because the resistor capacitor (RC) 

pairs can be easily mixed and matched to get the 

desired frequency, duty cycle, and total time. 

Also, this device gives very accurate readings 

compared to an online 555 timer calculator since 

resistors and capacitors can vary in their values, 

therefore differentiating the output wave from the 

calculated one.  

 

 

 

 

 

The 555 timer is a basic all round IC that outputs a varying square wave using RC pairs. It was 

extensively used in the ICS2O course hence why this device was created. More details on the 

555 timer can be viewed in earlier sections of the DER.  

 

The OLED (Organic Light Emitting Diodes) 

display is a new and widely used display device 

similar but vastly superior to the LCD screen. It is 

thinner, more efficient, bendable, provides better 

image quality, and does not require a backlight. 

This is why it is used in the screens of most 

modern technology companies such as Apple and 

Samsung. An OLED is comprised of carbon-

based material and does not contain any harmful 

metals hence the organic label. To put it simply, 

the material emits light when electricity is passed 

through. However, there are more important 

layers to protect the material such as the substrate 

and backpane, and the encapsulation layer 

proctecting the frontpane containing the carbon-

based material and electrodes from oxygen. As time passed, more layers were applied to make 

them more efficient and durable.  

 

Parts Table 

Quantity Description 

1 Computer 

1 AVR pocket programmer 

1 AVR breakout board 

1 USB A to USB C cable 

1 ATmega328P 

1 16 MHz quartz crystal 

2 20 pF ceramic capacitors 

1 10 k fixed resistor 

1 Momentary PBNO  

1 DC power jack 

1 7805CT 5V regulator 

1 9V battery 

1 555 Timer IC 

1 3 mm red LED 

1 680  fixed resistor 

1 128  64 OLED display 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

65 

 

The OLED display used in this project is a 128 by 64 screen using I2C communication. Like 

UART, I2C communication is a very simple only using two wires; one for the SCL clock signal 

and the other for the SDA data signal. Therefore, most devices only require four pins to operate, 

the other two being power and ground. To send data, I2C uses messages comprised of frames as 

shown below: 

 
 

The start frame is initialized by the SDA switching from high to low before the SCL does the 

same. The address frame tells the data the specific device address to go to or receive from 

depending on the next frame called the read/write bit. After that comes the actual data in the 

form of data frames 1 and 2. The frames that surround these data frames are confirmation frames 

called ACK/NACK (acknowledge/no acknowledge) bits to verify that the data was send/received 

properly. Finally, the stop frame closes the message by the SDA line switching from low to high 

after the SCL line does the same. 

 

To create an in system programmable device, the 

ATmega328P needs to be implemented into a 

breadboard. However, this MCU needs some 

basic external peripherals in order to function 

properly. These include a crystal and capacitors 

for the clock signal and a pull up resistor to reset 

the MCU. The crystal capacitor formation creates 

an oscillation circuit producing a square wave 

from the quartz crystal at a frequency of 16 MHz. 

This frequency governs the flow of code and all 

timing aspects that is used in the ATmega328P. 

The basic setup it of a breadboard is shown on the 

right with the inclusion of a blink LED.  

 

An important thing to note is that the 

ATmega328P only accepts 5V power so a 5V 

regulator is needed to turn 9V from a battery into 

5V. The 5V regulator used in the project is the 

7805 which has 3 pins. The leftmost one is the 

input voltage, the middle is groud and the 

rightmost pin is the output voltage of 5V. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

66 

 

The ATmega328P is not like any other IC where 

it performs a specific function right out of the 

factory. The user needs to implement the 

bootloader, which is the communication bridge 

between the Arduino IDE and the ATmega328P, 

along with some code in order to tell it what to 

do. There are a few methods to do this but the 

method used in this project is from the use of an 

AVR Programmer shown on the right. This 

handy board with the help of an AVR breakout 

board attaches the nessecary pins to the chip 

shown to the right. These pins are the MISO 

(master in slave out), clock, reset, power, MOSI 

(master out slave in), and ground. Once 

connected, the bootloader can be burned to the 

MCU and the code can be uploaded using the 

programmer option in the Arduino IDE.  

 

 

This communication between software and hardware of the IDE and ATmega328P follows the 

standard Serial Peripheral Interface (SPI) by using the MISO, MOSI and clock line. The MISO 

pin sends data from the slave to the master, the MOSI pin sends data to the peripheral devices, 

and the clock line synchronizes the data transmission. This form of hardwired communication is 

used for fast transmission over short distances such as reading and writing from an SD card.  

 

The code for the project is relatively simple with no new major concepts introduced. The only 

new features are the Adafruit OLED display library implemented for easy use of the OLED 

screen and a new function called pulseIn which times the high and low states of a pin in 

microseconds. Here are the parameters of the function: 

 

pulseIn(pin, value, timeout); 

 

The pin parameter defines the pin of the ATmega328P to read from, value is defined as 

HIGH or LOW which tells the function what value to time, and timeout is an optional 

parameter that tells the function when to stop timing after the defined number of miliseconds. 

The default is 1 second. There is an alternative function called pulseInLong which contains 

the same parameters but is better at taking longer pulses. The new Adafruit OLED library has 

many functions to easily use the OLED display but all of the functions that are utilized are self 

explanatory so there is no need for detail. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

67 

 

Media 

  

The ATMega Breadboard ISP device setup The setup for uploading code using male to 

female wires 

 

YouTube video link: https://youtu.be/4NGWaetlcpA  

 

Code 

 
 

// PROJECT    : ATmega328P Breadboard 555 Timer Reader 

// PURPOSE    : Extending the versatility of the ATmega328P 

// DATE       : December 18, 2020 

// MCU        : 328p/84/85 

// STATUS     : Working 

// NOTES      : Requires 1 external capacitor and 2 external resistors 

// REFERENCES : http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#standalone 

 

//I2C library 

#include <Wire.h> 

 

//OLED libraries 

#include <Adafruit_GFX.h> 

#include <Adafruit_SSD1306.h> 

 

#define displayWidth 128    // OLED display displayWidth, in pixels 

#define displayHeight 64    // OLED display displayHeight, in pixels 

#define objectWidth 23      //object display displayHeight in pixels  

#define objectHeight 16     //object display displayHeight in pixels 

 

#define OLED_RESET 4  //required reset declaration 

 

//display and I2C communication setup 

Adafruit_SSD1306 display(displayWidth, displayHeight, &Wire, OLED_RESET); 

 

//information variables 

uint32_t offTime; 

uint32_t onTime; 

uint32_t totalTime; 

float frequency; 

float dutyCycle; 

https://youtu.be/4NGWaetlcpA


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

68 

 

 

 

#define readPin 2          //input pin from the 555 timer 

#define timeout 90000000   //timeout limit in microseconds 

 

//bitmap of the object in hex 

const uint8_t PROGMEM timer555[] = { 

  0x39, 0xe7, 0x9c, 0xff, 0xff, 0xfe, 0x80, 0x00,  

  0x02, 0x80, 0x00, 0x02, 0x80, 0x00, 0x02, 0x8f,  

  0xbe, 0xfa, 0xc8, 0x20, 0x82, 0xaf, 0x3c, 0xf2,  

  0xa0, 0x82, 0x0a, 0xc0, 0x82, 0x0a, 0x8f, 0x3c,  

  0xf2, 0x80, 0x00, 0x02, 0x80, 0x00, 0x02, 0x80,  

  0x00, 0x02, 0xff, 0xff, 0xfe, 0x39, 0xe7, 0x9c 

}; 

 

//animation variables 

uint8_t xSpeed = 1; 

uint8_t ySpeed = 1; 

uint8_t x; 

uint8_t y; 

 

void setup() {   

  pinMode(readPin, INPUT);                      //input pin is defined 

  Wire.begin();                                 //begin I2C transmission  

  display.begin(SSD1306_SWITCHCAPVCC, 0x3C);    //begin display 

 

  setupText(2, 0, 0);                 //setup text 

  display.println(F("Waiting..."));   //print into memory 

  display.display();                  //display on OLED 

  getData();                          //get 555 timer information 

} 

 

void loop() { 

  setupText(1, 0, 0); 

  display.print(F("High (ms): ")); 

  display.println(onTime * 0.001);      //display is in milliseconds 

  display.print(F("Low (ms): ")); 

  display.println(offTime * 0.001);     //display is in milliseconds 

   

  display.print(F("Total (ms): ")); 

  display.println(totalTime * 0.001);   //display is in milliseconds 

   

  display.print(F("Duty Cycle: ")); 

  display.print(dutyCycle); 

  display.println(F("%")); 

 

  display.print(F("Freq (Hz): ")); 

  display.println(frequency); 

   

  display.display(); 

  getData(); 

} 

 

void getData() { 

  uint64_t currentTime = micros(); 

   

  onTime = pulseInLong(readPin, HIGH, timeout);   //number of microseconds when HIGH   

  offTime = pulseInLong(readPin, LOW, timeout);   //number of microseconds when LOW 

 

  if(micros() - currentTime > timeout)  timeoutAnimation(); 

   

  totalTime = onTime + offTime;               // 

  dutyCycle = float(onTime)/totalTime*100;    // 

  frequency = 1000000.0/totalTime;            //frequency in Hz 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

69 

 

 
 

void setupText(uint8_t s, uint8_t x, uint8_t y) { 

  display.clearDisplay(); 

  display.setTextColor(WHITE); 

  display.setTextSize(s); 

  display.setCursor(x, y); 

} 

 

void timeoutAnimation() { 

  randomSeed(analogRead(A0));  

  x = random(displayWidth - objectWidth);      //random y position 

  y = random(displayHeight - objectHeight);    //random x position 

 

  //infinite loop (each iteration is a frame) 

  while(true) { 

    display.clearDisplay(); 

     

    //display text in the center 

    setupText(1, 44, 28); 

    display.println(F("Timeout")); 

 

    //creates an object 

    display.drawBitmap(x, y, timer555, objectWidth, objectHeight, SSD1306_WHITE);  

 

    x = x + xSpeed;   //move by xSpeed 

    y = y + ySpeed;   //move by ySpeed 

 

    //checks if the object hits the edge of the screen 

    if(x + objectWidth >= displayWidth || x <= 0) xSpeed = -xSpeed;       

    if(y + objectHeight >= displayHeight || y <= 0) ySpeed = -ySpeed; 

     

    display.display(); 

  }   

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

70 

 

Reflection 

I felt like this project was the tamest one compared to the others as ample was available to design 

and program the device. Also, there were not many complications or new and confusing things to 

learn. Because of this, I decided to try implementing some advanced code such as implementing 

the parody of the DVD bouncing logo when the square wave of the 555 timer is too long and 

when the device is first calculating the time of the pulses. However, after many tries I couldn’t 

get the animation to run when loading the data in when using Timer1 interrupts. This left me 

disappointed and wondering why it wouldn’t function. So I researched this and found that 

something about I2C communication conflicted with the interrupts so I left it at that. However, 

over the Christmas holidays I will try and find some workaround to do this. After creating this 

device on a breadboard, I would love to have the opportunity to put this on a perma-proto board 

to prepare for the upcoming ISPs. I just hope that I won’t die of stress when Project 2.4.2 Perma-

Proto ATmega328P rolls around.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

71 

 

Project 2.4.2: Perma-Proto ATmega328P 

Purpose 

The purpose of this project is to transfer the breadboard standalone circuit to a perma-proto 

board to create a permanent circuit and to practice soldering skills as well as our planning, 

carefulness and attention to detail. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#permaproto 

 

Procedure 

The project goal was to convert the temporary 

prototype 555 timer reader on the breadboard to a 

permanent circuit on a 30 column perma-proto 

board whose size allows it to fit into a small metal 

tin. This presented the specific challenge of fitting 

in the circuit onto a reduced set size of 30 

columns instead of 60. This perma protoboard I 

used is shown on the right which is also 

juxtaposed with a half breadboard to compare the 

differences. As shown, the hole sets and wiring 

are nearly identical the only difference being 

more holes in the power rails of the perma-proto 

board and a shortened distance between them and 

the main holes. Also, when working with the 

board, there is much more flexibility as the 

connections can be disconnected using a box 

cutter to strip the copper wiring. Wires can also 

be routed on both sides. 

 

 

 

Luckily, I went to the effort of trying to fit the breadboard prototype into 30 columns in the last 

part of the project, however, I still had to make a few changes, mainly to accommodate the 

potential metal tin case. First, I removed the reset button and used a big mountable PBNO to 

save space. Then, I decided to rearrange the circuit by moving the 5 V regulator to the right and 

putting the squarewave signal LED under the OLED display to further compact the circuit. 

 

 

 

 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#permaproto


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

72 

 

 

 I also made a few more part additions to the 

already full perma-proto board to increase  

 performance and ease of use as soldering parts 

can sometimes have adverse effects if not careful. 

Firstly, I added a 1 M resistor across the crystal 

pins which would achieve a more consistent 

square wave from the crystal when powered on. 

Next I added a 10 F capacitor across the power 

rail, making sure to position it as close to the 

source of power as possible in order to maximize 

the smoothing out of power spikes. A similar 

approach was made on the 5 volt regulator by also 

adding a 10 F capacitor across the 9 volt input 

pin to ground and a 0.1 F capacitor across the 5 

volt output pin also to ground. Finally, breakable 

female headers were put in place of the 555 timer 

resistors and capacitors to easily mix and match 

for a desired frequency and a 1  2 headers were added for outsourcing the square wave and 

power pins.With this rearrangement I put it together on the breadboard to make sure it worked 

and then planned the circuit on the perma-proto board.  

 

To start planning, I took a picture of the board to 

roughly draw out the components and 

arrangements. I also had to decide where to make 

cuts in the connections of the proto board to be 

able to upload code directly with the SAPP using 

a 1  6 bendable female header instead of 

individual female wires to simplify the process of 

flashing ocde. Once a rough plan was in place, I 

soldered everything over a few days, changing up 

minor details of the plan after some 

reconsiderations between soldering sessions. The 

rough drawing of the plan can be seen on the right. 

 

The soldering process was tough but not as hard 

as soldering my grade 10 ISP, the analog traffic 

light. I learned a lot of lessons and skills from that 

culminating project which helped me to improve 

my work and the result for this project. For 

example, I learned that cutting your own wire was 

a lot neater and cleaner than using breadboard 

wires. I had also learned to solder up both sides of 

the perma-proto board where wires poked 

through to beef up the physical strength and 

connectivity which can be seen on the right.  

Parts Table 

Quantity Description 

1 Previous project components 

1 Half sized perma-proto 

1 1  6 female header 

1 1  4 female header 

2 1  2 female headers 

1 8-pin chip seat 

1 28-pin chip seat 

2 10 f capacitors 

1 0.1 f capacitor 

1 1 M fixed resistor 

1 Mountable PBNO  

1 Mountable DC power jack 

1 Mountable toggle switch 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

73 

 

To ease up the process, I divided the circuit into 

sections shown on the right and soldered the 

sections individually while taking breaks in 

between. I also made sure to have my digital 

multimeter handy to check for connectivity to 

components to catch any errors after soldering 

each component. Testing the different stages of 

the circuit was crucial to locating any problems 

and fixing them. One such example was with a 

test where the 555 timer stoped functioning. Since 

the majority of components were not soldered on, 

I knew the problem lay in the timer itself or the 

power rails. I checked the connectivity of the bottom power rails and sure enough I found the 

connectivity to be dodgy so I simply added more solder on the bottom as well as the top of the 

wires connecting the two power lines together.  

 

After the soldering process the device worked 

almost flawlessly. Everything worked as before  

though this time, the device can switch on an off 

using the mounted toggle switch, the square wave 

can be utilized from the output, and the resistors 

and capacitors of the 555 timer can be swapped. 

Uploading code became much simpler by sticking 

the AVR breakout board in the 1  6 female 

header displayed on the picture instead of using 

the loopy female jumper wires of the last project. Also, the chip seats and female headers allow 

any of the major components such as the ICs or OLED display to be replaced if they ever get 

damaged. No changes to the software were made in this project. 

 

In the end, there were a few minor issues. Firstly, there is some flickering of power when moving 

the on/off switch around on which suggests a soldering issue. As I get more practice soldering, 

these kinds of issues will start to disappear. Also, the OLED display can glitch out when 

handling the the board from the underside as this is where I made a poor decision to put the data 

and clock lines. In the future, these lines will be in a more robust cable and be located 

somewhere where there is minimal contact as these lines are extremely sensitive to the slightest 

disruption of electrical signals.  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

74 

 

Media 

  

The full working device soldered and fit onto 

a half perma-proto board 

 

The underside of the device 

YouTube video link: https://youtu.be/SkQtCr-GAQM  

 

Reflection 

Transferring circuit onto a perma-proto board was better than I expected it to be; I was lucky to 

have some soldering experience from my Grade 10 ISP, the analog traffic light where I learned a 

lot of valuable lessons. When first introduced to the project, I knew I had to take my time with it 

in order to get it 100 percent working as I was not yet an expert at soldering but had lots of time 

over the Christmas break. When I finally got to that stage, I saw the benefit of previous soldering 

projects paying off as it felt a lot easier than last year. I knew how to avoid problems that I ran 

into and how to fix them as well. Overall, it was a nice change to challenge my design, planning, 

and carefulness of familiar components instead of learning and experimenting with new ones.  

 

After deep consideration of my time, other courses, and energy, I have decided to try my best at 

putting the perma-protoboard in a metal mint tin. I was truly on the fence about whether or not to 

push this project to the finish line as the workload from other classes has ramped up; there were 

major culminating projects approaching their deadline as well. From the very start of this project, 

I kept pondering the tradeoffs of boths sides, but in the end, after the completion of this DER 

writeup and a hot shower, I realized I had come this far and my hesitation turned into certainty. I 

decided to keep on going as I felt it was worth a final effort. I realized over the years of many 

DER writeups, videos, and painstaking projects, that there are many lessons and skills to be 

learned when taking the long, hard, and unfamiliar road to the finish line, even if you do not 

completely cross it.  

https://youtu.be/SkQtCr-GAQM


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

75 

 

Project 2.5: Wireless Communication (Infrared) 

 
 

Purpose 

The purpose of this project is to explore and work with the common forms of wireless 

communctiation. This specific project explored the use of Infrared control. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#Wireless 

https://learn.sparkfun.com/tutorials/ir-communication/all 

https://www.sbprojects.net/knowledge/ir/index.php 

 

Procedure 

The basis of the project utilizes the Infrared 

wavelength to transmit and receive data. Infrared, 

or IR for short, is a wavelength with a lower 

frequency than visible light, hence, humans 

cannot perceive it. Cameras can visually detect IR 

in near proximity as shown to the right in the 

form of purple light since the silicon based sensor 

absorbs that wavelength. Other animals such as 

snakes, mosquitos, and fish also dectect infrared. They evolved to see IR to locate prey and 

navigate in the dark as IR is radiated through sources of heat. Therefore, for a receiver diode to 

properly receive an infrared signal, it must be modulated or flashed at a certain frequency so that 

the receiver can distinguish between ambient IR and the actual transmitter LED. Usually, these 

frequencies are set at 38 kHz however depending on the remote and protocol, the frequency may 

differ. 

 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html#Wireless
https://learn.sparkfun.com/tutorials/ir-communication/all
https://www.sbprojects.net/knowledge/ir/index.php


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

76 

 

As shown on the right, the transmitter is 

comprised of a transparent infrared emitter LED 

while the receiver diode is black or dark blue to 

absorb the most light. Current running through the 

transmitter LED controls how far the signal 

travels; the more current runs through, the farther 

the signal can be detected, but as more current 

flows through, the higher the heat production in 

the LED and energy used in the battery. These 

side effects can be reduced by turning down the 

pulse/pause ratio. The rest of the circuit usually 

include buttons, a microcontroller and a quartz crystar or ceramic resonator to modulate the 

signal. Usually, the microcontrollers feature a low power sleep mode where it “wakes up” and 

transmits a command once a button is pressed to save battery life. 

 

 
 

The command is sent and received through the receiver LED and its circuit. Displayed above, the 

picture substitudes a microcontroller with a simple transistor circuit to relay the IR pulses. The 

wavelength is picked up by the receiver diode and travels through the components in the block 

diagram shown at the bottom. The amplifier amplifies the signal while the limiter acts as an 

automatic gain control (AGC) circuit to output a constant pulse strength no matter its input 

strength. The signal is sent to the band pass filter, tuned to listen and accept a certain modulation 

frequency while rejecting others. That is why TV’s use specific remotes so that other remotes do 

not interfere. Next, the demodulator converts the modulated wavelength into a regular high low 

square wave while the last two components further configure the signal to produce a low when a 

carrier frequency is detected. The microcontroller then reads the incoming data as a serial bit 

stream. 

 

 
 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

77 

 

At first, IR control was attemped to the two dimensional 8  8 LED matrix using Hugo Reed’s 

MatrixMadeEZ PCB. But, after three days of failure from the IR codes not reading properly and 

my limited timeframe, I decided to step down to the simpler one dimensional Morland Bargraph 

PCB. Here, a remote can control the bits state, shift the bits left or right, increase or decrease the 

displayed binary value by one, create a scrolling animation with play/pause functionality, reset 

the value to 0, and use the on/off button to turn the display on and off.  

 

The remote used for this project features a 3  7 

button arrangement containing icons of  

standard remote functions as shown. This remote 

sends IR frequencies to a three pin receiver sharp 

GP1UX511QS IR sensor which accepts a range 

of frequencies and sends its output through one 

pin while the other two are used for five volts of 

power and ground. The Morland Bargraph PCB 

consists of a 74HC595N shift register controlling 

a ten LED bargraph. Because of the dilemma of a 

maximum of eight outputs on the shift register, 

only eight LEDs of the bargraph can be 

controlled. Current is then fed into a nine pin 

bussed resistor network to avoid blowing the 

LEDs. Bussed resistor networks contain a number 

of inputs containing resistors for a number of 

LEDs or other devices that need limited current 

and routes them to one output pin usually leading 

to ground. Therefore, the bussed resistor network 

containing nine pins features only eight resistors. 

 

Instead of using the software shift out function to manipulate the shift register, the more efficient 

and faster hardware SPI can be used in exchange for limited flexibility as the shift registers serial 

input pin, clock and latch pin must be connected to the ATmega328P’s hardcoded master out 

slave in (MOSI), clock, and slave select pins respectfully. On the Arduino UNO the SPI 

peripherals are located in digital pins 13 for the clock, 11 for MISO, and 9 for slave select. 

Digital pin 12 contains the master in slave out (MISO), however, since the bargraph does not 

return any data to the microcontroller, it is not used. Through meticulous planning and design of 

the PCB from T. Morland, this device can be used as a breadboard appliance on the UNO while 

using SPI. Therefore, no breadboard is needed for this project as both the IR receiver and PCB 

can fit on the UNO.  

 

The code in the Arduino IDE to form specific codes from reading the incoming data stream of 

the IR sensor uses Ken Sherrifs library to decode the signal. It contains a plethora of protocols 

and frequencies from different remotes used to identify and send signals that emulate the original 

IR remote signal. Once the code is detected, a series of if statements compare predetermined 

codes that correspond to the buttons on the remotes to see if it was pressed. If so, an 8-bit value 

is altered in some way using bitmath and the value is then relayed to the shift register and 

displayed in binary. More information is available in the code section. 

Parts Table 

Quantity Description 

1 Arduino UNO 

 USB A to C cable 

1 IR remote 

1 Sharp GP1UX511QS sensor 

1 Morland Bargraph PCB 

1 1  6 female header 

1 74HC595N shift register 

1 10 LED bargraph 

1 9 pin 330 bussed resistor 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

78 

 

Media 

  

The project setup controlled through IR by a 

remote 

 

The Morland Bargraph configured in SPI mode 

on the Arduino UNO 

 

 

 

 

The MatrixMadeEZ PCB designed by Hugo 

Reed 

 

The Morland Bargraph PCB designed by Tim 

Morland 

 

YouTube video link: https://youtu.be/41g1aDzq_po 

 

https://youtu.be/41g1aDzq_po


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

79 

 

Code 

 
 

 

 

 

 

// PROJECT  :SPIShiftOut 

// PURPOSE  :To highlight the overlap between the speed of hardware SPI and the flexibility 

//          :of software shiftOut by transmitting a byte to a 595 Shift Register 

// DEVICE   :Arduino UNO + Morland Bargraph V3 (insert appliance as shown) 

// AUTHOR   :C. D'Arcy (SPI Morland Bargraph) + Xander Chin (IR control) 

// DATE     :Feburary 27, 2021 

// uC       :328p 

// COURSE   :ICS3U/ICS4U 

// STATUS   :Working 

// REFERENCE:http://darcy.rsgc.on.ca/ACES/TEI3M/images/SPIConcept.png 

//          :http://darcy.rsgc.on.ca/ACES/TEI3M/SPICommunication/images/SPIvsShiftOut.png 

// NOTES    :Hardware SPI (fast) and software shiftOut (flexible) are not identical but  

//          :strikingly similar in their digital waveform behaviour. 

//          :This code highlights and contrasts the differences between their usage 

//          :on familiar hardware. Explore which one serves each of your applications better. 

 

#include <SPI.h>              //required SPI library 

#define OENABLE 9             //MBV3 pin for Output Enable 

 

#include <IRremote.h> 

#define receivePin 4 

#define GND 3 

#define VCC 2 

IRrecv irrecv(receivePin); 

decode_results results; 

 

uint32_t code = 0;        //code value 

uint32_t prevCode = 0;    //for repeat codes 

uint32_t numberCodes[] =  

{16738455, 16724175, 16718055, 16743045,  

 16716015, 16726215, 16734885, 16728765}; 

//--bit0--|--bit1--|---bit2---|--bit3---| 

//--bit4--|--bit5--|---bit6---|--bit7---| 

 

uint8_t value = 0;            //value shifted out to the shift register 

bool play = false;            //scroll or static 

bool left = false;            //scroll left or right 

bool state = false;           //controls state of output enable pin            

uint32_t lastShift;           // 

 

bool showValue = true;        //print value in the serial monitor 

#define scrollSpeed = 100;    //how fast the bits scroll in milliseconds 

 

void setup() { 

  Serial.begin(9600); 

  pinMode(OENABLE, OUTPUT);   //595's output enable pin must be pulled 

  pinMode(GND, OUTPUT); 

  pinMode(VCC, OUTPUT); 

  digitalWrite(GND, LOW); 

  digitalWrite(VCC, HIGH); 

  digitalWrite(OENABLE, state); //LOW to display its storage registers 

  //pinMode(MISO, OUTPUT);      //No need for MISO(12) in this example 

   

  Serial.println("Enabling IRin"); 

  irrecv.enableIRIn(); // Start the receiver 

  Serial.println("Enabled IRin"); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

80 

 

 

 
 

void hardwareShiftOut(uint8_t value) { 

  //Initializes the SPI bus setting SCK, MOSI, and SS to outputs, 

  SPI.begin();                //pulls SCK and MOSI low, and SS high. Default: MSBFIRST 

  //digitalWrite(SS, LOW);    //true SPI requires Slave Select LOW to identify specfic target 

  SPI.transfer(value);        //invert the output for ease of interpretation 

  digitalWrite(SS, LOW);      //pull Slave Select LOW to identify target device 

  digitalWrite(SS, HIGH);     //release target device 

  SPI.end();                  //disables SPI Bus (leaving pin modes unchanged) 

  digitalWrite(OENABLE, state); 

} 

 

void loop() { 

  checkIR(); 

    

  //cycle through number codes 

  for(uint8_t x = 0; x < 8; x++) { 

    if(code == numberCodes[x]) { 

      if((value >> x) % 2 == 1) value = value - (1 << x); //if bit is on turn off bit 

        else value = value + (1 << x);                    //else turn off bit 

    } 

  } 

 

  //codes for fast forward/backward arrow keys 

  if(code == 16720605 || code == 16761405) { 

    if(code == 16720605) 

      left = true;                //shift left 

    else  

      left = false;               //shift right 

       

    if(!play) keepInBits(left);   //if no scrolling shift bits  

  } 

 

  //more codes 

  if(code == 16769565) value = 0;         //reset button 

  if(code == 16712445) play = !play;      //play/pause button 

  if(code == 16753245) state = !state;    //power button 

  if(code == 16748655) value++;           //up button 

  if(code == 16769055) value--;           //down button  

 

  //scrolling animation 

  if(millis() - lastShift > scrollSpeed && play) { 

    keepInBits(left);       //scroll bits     

    lastShift = millis();   //reset timer 

  } 

 

  //helps repeat codes 

  if(code != 4294967295 && code != 0) prevCode = code; 

 

  //repeat codes 

  if(code == 4294967295) { 

    if(prevCode == 16748655) value++;   //up button 

    if(prevCode == 16769055) value--;   //down button 

  } 

 

  hardwareShiftOut(value);                //display value on bargraph 

  code = 0;                               //reset code 

  if(showValue) Serial.println(value);    //print value in decimal  

} 

 

void checkIR() { 

  if (irrecv.decode(&results)) { 

    Serial.println(results.value); 

    code = results.value; 

    irrecv.resume(); // Receive the next value 

  } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

81 

 

 
 

Reflection 

This optional project was fun but frustrating to do, especially when trying to figure out and 

failing to control the MatrixMadeEZ with IR. I realized that a lot of time was spent trying to fix 

it, where it could have been used for more important things such as focusing on my ISP. 

However, it was from this experience that I learned a lot about the matrix, interrupts, infrared 

control and code improvements. When I finally decided to step down to the bargraph, I did not 

have a lot of time to complete the project, but with my previous experience of working with the 

MatrixMadeEZ, configuring the Morland Bargraph was a breeze. Though, I do believe that my 

code could have been refined more as I did use a lot of if statements, but with limited time, this 

was the best I could do. Along the way of completing the project, I experimented with the 

blocking the IR signal in various ways and was very fascinated and surprised at the sensitivity 

and range. Overall, IR was fun to play around with and because of my acquired knowledge and 

usage of this specific form of wireless communication, I am currently planning to use it in my 

future projects.  

  

 

void keepInBits(bool left) { 

  if(left) { 

    //if bit 7 is not on: 

    if((value >> 7) % 2 == 0) value <<= 1;    //shift up by 1 

    else {                                    // 

      value <<= 1;                            //shift up by 1 

      value += 1;                             //turn on bit 0 

    } 

  } 

 

  else { 

    //if bit 0 is not on: 

    if(value % 2 == 0) value >>= 1;           //shift down by 1 

    else {                                    // 

      value >>= 1;                            //shift down by 1 

      value += 128;                           //turn on bit 7 

    } 

  } 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

82 

 

Project 2.6: (ISP - Medium): The LiDAR Measurement Device 

 
 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

83 

 

The LiDAR Measurement Device Parts Table 

Quantity Description 

1 ESP32 

2 MG995 servo motors 

1 TFmini S LiDAR sensor 

1 Laser pointer 

1 MG995 servo motor 3D printed case 

1 LiDAR Measurement Device 3D printed case 

1 LiDAR Measurement Device PCB 

2 0.1 F capacitor 

5 10 k fixed resistor 

2 4.7 k fixed resistor 

2 3.3 k fixed resistor 

1 EC-11 rotary encoder 

1 128  64 OLED display 

1 7805CT 5V regulator 

1 7805CT 5V regulator heatsink 

1 USB C to microUSB 

1 5V 2A DC power adapter 

8 Rectifier diode 

* Male headers 

* Female headers 

 

Purpose 

The purpose of this project was to explore our interests in engineering by creating a project that 

encompasses the three branches: Hardware, software, and design. For my project I decided to 

create a device that can measure the shortest distance between any two objects.  

 

Theory 

To achive this result, trigonometry is needed as without it, the only way to measure distance 

between two objects would be to direcly measure with a ruler. Ideally, the setup forms some sort 

of triangle with some known angles and side lengths. The two objects can act as two verticies 

and of the triangle with one other point as the last vertex. This last point is where the device is 

can be positioned, forming a triangle with the distance between the two objects opposite where 

the device sits. This setup is perfect for implementing the Law of Cosines where distance 

between the objects and lidar sensors as well as the angle between the two objects relative to the 

device is known. The angle between the two objects are gathered from servo motors, which are 

used to set their position and attached is a a distance sensor is used to get the lengths from it to 

both objects. This fulfills the requirements for the Law of Cosines, therefore, distance can be 

measured from any two objects so long as the servo motors have the mobility to do so.  

 

𝑐 =  √𝑎2 + 𝑏2 − 2𝑎𝑏 cos Θ 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

84 

 

 

Here, the project will be divided into four parts: Hardware, software, mathematics, and design.  

 

Part A: Hardware 

Purpose 

The hardware section discusses the detailed workings of components implemented into the 

project as well as how they interact together. 

 

References  

http://www.technoblogy.com/show?1YHJ 

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf 

https://circuitdigest.com/microcontroller-projects/using-classic-bluetooth-in-esp32-and-toogle-

an-led 

https://www.youtube.com/watch?v=5bHPKU4ybHY&t=455s 

https://www.makeblock.com/project/mg995-standard-servo 

https://en.wikipedia.org/wiki/Lidar 

https://www.gotronic.fr/pj2-sj-pm-tfmini-s-a00-product-mannual-en-2155.pdf 

 

Procedure 

The basic rundown of the hardware consists of a distance sensor mounted on two servo motors, 

one controlling the yaw while the other controls the pitch. These servos are usually controlled 

through Bluetooth, but if not connected, the device will revert to manual control. This consists of 

a rotary encoder paired with touch buttons to manually control the servos while an OLED 

display presents the current information of the device such as the current distance, signal 

strength, pitch and yaw angles with I2C communication. A laser pointer is also mounted on the 

top for better visualization of where the sensor is pointing at. Pushing the button on the rotary 

encoder saves a current point and by moving the servos around, the OLED screen displays the 

distance between the saved point and the current point the sensor is looking at. All these 

components are driven by a microcontroller powered through a microUSB cable. 

 

This microcontroller is a new Arduino compatable board called the ESP32, similar to the 

familiar ATmega328P but with more peripherals and faster processing. It comes from a line of 

other ESP boards. This specific ESP32-WROOM board offeres lots of extra features including 

in-built Bluetooth, Wi-Fi, a hall effect sensor and capacitative touch pins just to name a few. The 

processor supports a clock frequency of up to 240 MHz with an onboard SPI flash size of 4 MB 

and 34 programmable I/O pins. These pins have a myrad of functions with 8-bit digital to analog 

converters (DAC) and 12-bit analog to digital converters (ADC), along side SPI, I2C, UART, 

PWM and I2S pin support. The whole list of features for each pin can be found in the datasheet 

provided in the references and in the pinout below. 

 

http://www.technoblogy.com/show?1YHJ
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://circuitdigest.com/microcontroller-projects/using-classic-bluetooth-in-esp32-and-toogle-an-led
https://circuitdigest.com/microcontroller-projects/using-classic-bluetooth-in-esp32-and-toogle-an-led
https://www.youtube.com/watch?v=5bHPKU4ybHY&t=455s
https://www.makeblock.com/project/mg995-standard-servo
https://en.wikipedia.org/wiki/Lidar
https://www.gotronic.fr/pj2-sj-pm-tfmini-s-a00-product-mannual-en-2155.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

85 

 

 
 

The main feature implemented in the project was Bluetooth for wireless control and data 

transmission. Bluetooth on the ESP32 offers many implementations such as Bluetooth radio and 

Bluetooth interfaces however, the Bluetooth needed for this project is quite simple. It uses 

Classic Bluetooth, which is the ones everyday smartphones and computers use, to send and 

receive data in the form of the Serial Port Protocol (SPP). The ESP32 opens up a serial port 

where another device using the standard protocol can easily connect by going to the Bluetooth 

connection terminal. This makes connecting, sending and receiving very straightforward like any 

device.  

 

Other features such as the capacitative touch pins were implemented to control the device. These 

touch pins read a value and when anything that can hold an electrical charge is detected such as a 

finger, the value drops. This effect will work when the pin is connected other conductive 

material. Compared to a standard button, these touch sensing pins are more effective as there is 

no bounce, there are is need for any external components and they are directly implemented into 

the board for easy control such as integrating them with interrupts. Here, two touch buttons are 

setup to control the pitch of the servos. 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

86 

 

Along side these buttons is the EC-11 rotary 

encoder. By turning it one way or the other, the 

microcontroller reads it and can detect the 

rotation direction and the amount. To do this, the 

rotary encoder has two juxtaposed output pins 

labeled A and B. Inside the encoder are metal 

sheets that when turned, emit an electrical signal 

to the pins. With the way they are setup, one 

rotation will enable a high pin A before pin B 

while the other rotation does the opposite, therefore, any microcontroller can read these two pins 

and detect which direction it turns and how many times it does by tallying each pins change in 

state. This is especially useful for fine control over electrical components.  

 

Rotary encoders are still susceptible to bounce so 

a low pass filter or other hardware/software 

implementation is needed to reduce this. Here, 

resistors and capacitors are used to reduce noise 

using this circuit shown. The EC-11 also includes 

a built in button which is used for saving distance 

points. By turning the encoder once, the servo 

yaw moves by one degree either left or right 

depending on the direction of rotation. 

 

 

 

With the touch buttons and rotary encoder, the 

signals are read by the ESP32 and sent out to the 

servo motors. Servo Motors have a certain range 

of motion usually from 0° to 180° controlled by a 

pulse width modulation (PWM) signal through 

one pin. Differnet PWM signals correlate to 

different positions of the servo. Attaching any 

PWM pin to one of the I/O pins of the ESP32 will 

properly control the motor as all pins support 

PWM. Servo motors tend to require a lot of 

current especially when under a load so they are 

usually powered through a separate power supply 

since most microcontrollers output a maximum of 

500 mA.  

 

 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

87 

 

In this project, common MG995s servo motors are used with a range of 180°, an operating 

voltage of 5 volts and a current draw of 350 mA each without any load. When stalling, the 

current needed peaks to around 1500 mA. Hence, the minimum current draw is 700 mA and the 

maximum is 3 amps, therefore, a separate DC power supply is needed. Originally 9 volts DC was 

provided and scaled down to 5 volts using a linear regulator and a heat sink to dissipate heat 

better, but this proved too dangerous as the regulator rapidly became too hot to touch because of 

the amount of wattage being dissipated through heat. Wattage (W) can be calculated using this 

formula where V is voltage and A is amps:  

 

𝑊 = 𝑉 • 𝐴 

 

When plugging in the values of the wasted voltage and amount of current flow, the amount of 

watts turns out to be 4𝑉 • 0.7𝐴 = 2.8𝑊 minimum and 4𝑉 • 3𝐴 = 12𝑊 maximum! This amount 

of watts emanated through heat was most likely enough to overcome the regulators maximum 

operating temperature so 9 volts was replaced with a 5 volt 2 amp power supply.  

 

The LiDAR sensor is the last and arguably the 

most important piece of hardware equipment that 

measures the distance between the object and 

itself. LiDAR, LIDAR, or lidar is an acryonym 

for light detection and ranging or laser imaging, 

detection, and ranging. As the name suggests, this 

type of technology is used in 3D scanning, 

imaging and rangefinding. One prime example is 

self-driving cars where a spinning LiDAR sensor 

mounted ontop scans its surroundings. Another is equipping it onto a flying vehicle to scan cities 

or forests.  

 

In essence, LiDAR sensors works by emitting 

ultraviolet, visible, or near infared rays where it 

bounces off an object and is received by the 

sensor. In spite of this, the more reflective the 

object is the higher the accuracy will be. The time 

it takes for the beam to bounce back is recorded 

and is implemented as t in the speed equation 

where c is the speed of light. This is called the 

time of flight principle  

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

88 

 

The LiDAR sensor used in this project is the 

TFmini-S which is one of the more affordable 

ones to buy. The sensor uses the ToF principle by 

sending out a near-infrared beam and 

communicates with a microcontroller using 

UART at a standard baud rate of 115200 or I2C. It 

operates at 5 volts but uses 3.3 volt logic levels, 

therefore, a logic converter or simple voltage 

divider is needed for the communication pins. For 

simplicity sake, a voltage divider is used with a 

3.3 k resistor connected to 5 volts and another 

resistor of 4.7 k connected to ground, stepping 

the voltage down by around 3/5. 

 

Since this LiDAR sensor is one of the cheapest, it 

comes with certain limitations but is still very 

suitable for a prototype. Characterization of the 

sensor is shown on the table taken from the data 

sheet. Here, the range and accuracy can vary 

depending on reflectivity. The data sheet states 

that a black object with 10% reflectivity will only 

accurately measure from 0.1 to 5 meters while a 

white object with 90% reflectivity will 

accureately measure from 0.1 to 12 meters with a standard deviation from 0.5cm to 2.5cm 

respectively. Also, the field of view of the beam will play a role in effective detection of an 

object. The farther the object is, the wider it has to be for the increasing width of beam to effectly 

make contact. This minimum diameter of the object can be calculated using this formula where 

D is the distance between and  is the FOV but halved: 

 

𝑑 = 2 • 𝐷 • tan  

 

Therefore, using this equation for an object 1 

meter away gives a minimum diameter of 3.5cm 

while detecting an object 12 meters away 

unfortunately gives a rather large minimum 

diameter of 42cm. This effect also creates another 

downside where the distance will be between the 

actual distance of two object if the light spot hits 

both as shown on the right. This is especially 

prevalent the farther the sensor detects as the 

diameter of the light spot gets larger according to 

the formula.  

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

89 

 

With all these components, the hardware aspect is complete. Software takes over from here by 

giving instructions to the hardware from the ESP32 and other applications.  

 

Media 

  

The LiDAR Measurement Device reverting 

to manual control 

The laser pointer that aids with the direction at 

which the sensor is pointing at 

 

Part B: Software 

Purpose 

The software examines the programs and sketches designed to work with the hardware 

components and to implement engaging visualization and user control. 

 

References 

https://learn.sparkfun.com/tutorials/processor-interrupts-with-arduino/all 

https://www.youtube.com/watch?v=CJhWlfkf-5M 

https://processing.org/ 

 

Procedure 

The project uses two coding platforms. One is the familiar Arudino IDE where a single sketch 

coded in the C++ language is loaded onto the ESP32 while the other is Processing which uses the 

Java language to implement graphic display and user interactivity on an every day computer. 

These two platforms are connected by Bluetooth where code from the ESP32 wirelessly sends 

over data to the two processing sketches depending on which one is open.  

 

 

https://learn.sparkfun.com/tutorials/processor-interrupts-with-arduino/all
https://www.youtube.com/watch?v=CJhWlfkf-5M
https://processing.org/


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

90 

 

On the ESP32, the sketch checks to see if Bluetooth is connected through an in-built callback 

function in the Bluetooth library. If Bluetooth is not connected the ESP reverts to reading the 

encoder and touchbuttons and displaying information to the OLED display.  

 

The sketch makes use of the many interrupts on 

the ESP32, specifically touch interrupts. Usually, 

a microcontroller can only run one piece of code 

at a time. In the event where a change is made 

when it is not running the if statement that checks 

that code, that change will be missed. Interrupts, 

however, detect some sort of change no matter 

what the microcontroller is doing at the moment. 

This triggers a section of code called the interrupt 

service routine (ISR) to run, allowing the microcontroller to “multitask” somewhat. Interrupts do 

come with some limitations such as no delays and print statements as well as simple as possible 

ISRs in order for them to function efficiently and properly. Hardware interrupts respond to a 

change in a pin while software intterups respond to a change in software instruction. Here, the 

touch interrupt is a type of hardware interrupt that senses when a finger is touching the pin and 

reacts accordingly, allowing the OLED screen to display information while at the same time 

detecting touch contact. More information can be found in the code posted in the code section.  

 

The rotary encoder at first was also read using hardware interrupts for the two pins. Hardware 

interrupts can be configured in many ways such as changing it to detect rising edges, falling 

edges, changing edges, and low and high signals. In this situation, these hardware interrupts were 

configured to trigger an ISR on falling edges of the two pins, which allowed accurate rotations 

and direction of the encoder. This proved to be ineffective as it took a while to figure out that the 

ESP32 for whatever reason dectects both falling and rising edges when configured to falling. As 

of now, the encoder is read through simple polling of the loop function as the problem was too 

time-consuming to solve which unfortunately leads to some missed readings. The OLED display 

also needs to be paused in order for the ESP to properly read the encoder as the display function 

of the Adafruit OLED library takes a long amount of time to complete. 

 

In tandem with the touch interrupts are the timer interrupts that control how fast the servos pitch 

changes. Timer interrupts are a little different than traditional interrupts; they run their ISR when 

a certain amount of time has passed. Together, it increses or decreases the servo pitch by one 

degree depending on which touch button is pressed through the mentioned touch interrupts. All 

code with relevant comments can be found in the code section for a better understanding. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

91 

 

The other code includes the two sketches 

formulated in Processing for user control and 

visualization of the measruements. In short, 

Processing is a software program relvolving 

around the manipulation of visual arts and 

graphics using a computer which makes it the 

perfect application to use for professional looking 

viusals and controls for electronic devices. As 

mentioned before the program uses Java as 

opposed to the Arduino IDE’s C++. Comparing 

the languages at a fundamental level used in the 

sketches, there is not much notable differences. 

But, when adding in the extra classes and methods 

that make up the Arduino IDE for electronic 

control and Processing for visuals, both present a 

challenge in learning and getting used to. 

 

The basic setup of a processing sketch includes a setup function that runs once and a draw 

function that runs for an indefinite amount of time just like the Arduino IDE. To acutally 

communicate with a microcontroller, the sketch implements the serial library to detect, send and 

receive data through the Bluetooth serial port setup by the ESP32. Whenever serial data is sent 

over to processing, the sketch runs the code in the serial event function like an ISR. This goes for 

other built-in functions such as keyPressed or mousePressed which runs code when a certain key 

or mouse is pressed. Using these functions allows for suitable user control.  

 

The first processing sketch demonstrates some basics of processing. A 2D canvas is setup for 

text and other shapes to be displayed upon. The servos are controlled through the WASD keys 

while receiving data from the device. Certain points can then be saved to the sketch and are then 

used to measure distance between selected points. The sketch updates and presents this 

information in text on the interface. The YouTube video in the media section of this project 

demonstrates this more clearly.  

 

A notable code function used widely in this 

project is the custom class implementation. 

Classes are often used in Java, as it is an object-

oriented language. They consist of custom made 

objects which have their own specified attributes 

and functions. Names for these fucntions are most 

commonly uppercase to distinguish it from other 

varibles. In this sketch, a custom class called Text 

is created for displaying the information gathered 

from the ESP32 in text on the processing window. This class allows for highlighting, selection, 

and a change of words for the text object so that different points can be selected and 

interchanged among one other.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

92 

 

A custom class is also used in the second processing sketch which controls the servos to 

systematically scan the room around the device, presenting a 3D visualization of it called a point 

cloud. Here, a 3D canvas with an x y and z axis is used for displaying points, lines and other 

shapes located at different positions in 3D for a real life representation of the room. With this, 

distance measurements between points can be made and displayed on the point cloud while a 2D 

heads up display (HUD) lay out the necessary information. It also offers a lot of customization as 

shown in the YouTube video demonstration and media section. Code for the ESP32 and the two 

processing sketches can be found in the section titled code.  

 

Media 

 
 

The LiDAR Measurement Device controlled 

over Bluetooth 

 

The first processing sketch showing off 

highlighting and selection features of text 

  
 

A point cloud created by a scan of the 

surroundings 

 

A point cloud with a distance gradient created 

by a scan of the surroundings 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

93 

 

 

 
 

A point cloud with a strength gradient 

created by a scan of the surroundings 

 

 

The real life surroundings of the LiDAR 

Measurment Device when scanning 

Part C: Mathematics 

Purpose 

The mathemiatics section thoroughly explains the mathematics and use of formulas behind 

calculating distance measurements between points and displaying them in a 3D environment. 

 

References 

https://mathinsight.org/definition/magnitude_vector 

https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/electric-

motors/v/the-dot-product 

https://stackoverflow.com/questions/11819833/finding-3d-coordinates-from-point-with-known-

xyz-angles-radius-and-origin/29602921 

https://onlinemschool.com/math/library/vector/angl/ 

 

Procedure 

As explained in the theory section, the LiDAR measurement device relies on the Law of Cosines 

to calculate distance from two points using the two distances from the sensor to each of the two 

point as well as the angle inbetween. When moving only yaw or pitch, the angle can be taken 

directly from the difference in their yaw or pitch positions. However, when yaw and pitch are 

both altered in some way from one point to another, the angle calculation must deal with angles 

in 3D space. To make this solving the angles simple, the LiDAR sensor is based around the 

origin where as different objects around the room are centered around the scanner. When 

calculating distance between two objects, vectors can be drawn between the origin and the 

objects.  

 

https://mathinsight.org/definition/magnitude_vector
https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/electric-motors/v/the-dot-product
https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/electric-motors/v/the-dot-product
https://stackoverflow.com/questions/11819833/finding-3d-coordinates-from-point-with-known-xyz-angles-radius-and-origin/29602921
https://stackoverflow.com/questions/11819833/finding-3d-coordinates-from-point-with-known-xyz-angles-radius-and-origin/29602921
https://onlinemschool.com/math/library/vector/angl/


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

94 

 

In summary, vectors are values or objects that have a direction and magnitude which is important 

in a 3D world because direction gives information on where an object is from the origin and 

magnitude gives information on how far the object is in relation to the start of the vector. In this 

case, all vectors from the LiDAR scanner start at the origin.  

 

Here, 3D vectors math equations are needed to help calculate the angle between two points in 3D 

space. The equation to calculate the angle between two vectors, using the aforementioned 

direction and magnitude, is written here: 

 

𝛾 = cos−1 (
𝑑1
⃑⃑⃑⃑ • 𝑑2

⃑⃑⃑⃑ 

||𝑑1
⃑⃑⃑⃑ || × ||𝑑2

⃑⃑⃑⃑ ||
) 

 

The top part of the fraction represents the dot product of the two vectors written as 𝑑1
⃑⃑⃑⃑ • 𝑑2

⃑⃑⃑⃑  and 

their magnitudes written as ||𝑑1
⃑⃑⃑⃑ || • ||𝑑2

⃑⃑⃑⃑ ||. Magnitude of the vectors is simply the length of the 

vectors and the equation to calculate this can be calculated using their ending coordinates in 3D 

space when starting at the origin:  

 

||𝑑1
⃑⃑⃑⃑ || = √(𝑥1)2 + (𝑦1)2 + (𝑧1)2 

 

||𝑑2
⃑⃑⃑⃑ || = √(𝑥2)2 + (𝑦2)2 + (𝑧2)2 

 

This however is not needed as the magnitudes can be taken from the LiDAR scanner calculating 

the distance between itself and the object. Now, the magnitude will be refered to as just 𝑑. Dot 

products give a scalar value of how much one vector is travelling in the same direction to 

another. There are two equations to calculate this:  

 

𝑑1
⃑⃑⃑⃑ • 𝑑2

⃑⃑⃑⃑ = 𝑑1 • 𝑑2 • cos 𝛾 

 

𝑑1
⃑⃑⃑⃑ • 𝑑2

⃑⃑⃑⃑ = 𝑥1 × 𝑥2 + 𝑦1 × 𝑦2 + 𝑧1 × 𝑧2 

 

Since the first one requires the angle between the two vectors, the only option is to use 3D 

coordinates which are also used in the equation for magnitude. Calculating these 3D coordinates 

when the LiDAR scanner is based around the origin are shown here where d is the magnitude 

and yaw and pitch are the angles of the motors in the x and y axis:  

 

𝑥 = cos(𝑦𝑎𝑤) • cos(𝑝𝑖𝑡𝑐ℎ) • 𝑑 

𝑦 = sin(𝑦𝑎𝑤) • cos(𝑝𝑖𝑡𝑐ℎ) •  𝑑 

𝑧 = sin(𝑝𝑖𝑡𝑐ℎ) • 𝑑 

 

This is essensially how applications map out objects in a 3D space and how the second 

processing sketch does exactly that. Now that the coordinates have been figured out, the angle 

can be calucuated using the very long formula seen in the beginning by replacing the dot 

products with 3D coordinates: 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

95 

 

𝛾 = cos−1 (
cos(𝑦𝑎𝑤1) × cos(𝑝𝑖𝑡𝑐ℎ1) × 𝑑1 × cos(𝑦𝑎𝑤2) × cos(𝑝𝑖𝑡𝑐ℎ2) × 𝑑2 + sin(𝑦𝑎𝑤1) × cos(𝑝𝑖𝑡𝑐ℎ1) × 𝑑1 + sin(𝑦𝑎𝑤2) × cos(𝑝𝑖𝑡𝑐ℎ2) × 𝑑2 + sin(𝑝𝑖𝑡𝑐ℎ1) × 𝑑1 × sin(𝑝𝑖𝑡𝑐ℎ2) × 𝑑2

𝑑1 × 𝑑2

) 

 

Here, all that is needed is magnitudes of the two vectors d, and the yaw and pitch of the servos 

that point to the two different objects which then correctly calculates the angle. Luckily, this 

equation can be simplified further by taking out the magnitudes of the vectors through simple 

cancelling. Here is the resulting equation:  

 
𝛾 = cos−1(cos(𝑦𝑎𝑤1) × cos(𝑝𝑖𝑡𝑐ℎ1) × cos(𝑦𝑎𝑤2) × cos(𝑝𝑖𝑡𝑐ℎ2) + sin(𝑦𝑎𝑤1) × cos(𝑝𝑖𝑡𝑐ℎ1) × sin(𝑦𝑎𝑤2) × cos(𝑝𝑖𝑡𝑐ℎ2) + sin(𝑝𝑖𝑡𝑐ℎ1) × sin(𝑝𝑖𝑡𝑐ℎ2)) 

 

The equation is still quite long so further simplifying can still be done. Factoring out cos 𝑝𝑖𝑡𝑐ℎ1 

and cos 𝑝𝑖𝑡𝑐ℎ2 converts the previous equation to this: 

 
cos 𝛾 = cos(𝑝𝑖𝑡𝑐ℎ1) × cos(𝑝𝑖𝑡𝑐ℎ2) × (cos 𝑦𝑎𝑤1 × cos 𝑦𝑎𝑤2 + sin 𝑦𝑎𝑤1 × sin 𝑦𝑎𝑤2) + sin 𝑝𝑖𝑡𝑐ℎ1 × sin 𝑝𝑖𝑡𝑐ℎ2 

 

And through testing, I figured out that cos 𝑦𝑎𝑤1 • cos 𝑦𝑎𝑤2 + sin 𝑦𝑎𝑤1 • sin 𝑦𝑎𝑤2 is equal to 

cos(𝑦𝑎𝑤1 − 𝑦𝑎𝑤2) so at the current moment, the equation implemented in the software to figure 

out the angle between two vectors knowing their pitch and yaw angles is as follows (after some 

post-project research, I discovered this simplification is due to the angle difference identity): 

 

𝛾 = cos−1(cos(𝑝𝑖𝑡𝑐ℎ1) × cos(𝑝𝑖𝑡𝑐ℎ2) × cos(𝑦𝑎𝑤1 − 𝑦𝑎𝑤2) + sin(𝑝𝑖𝑡𝑐ℎ1) × sin(𝑝𝑖𝑡𝑐ℎ2)) 

 

I believe this equation can be simplified even further, however, with the time frame given for this 

project, this is all I could simplify that monster equation at the beginning to. Even so, simplifying 

the equation does not change the program as they are the same equation. But, simplifying it does 

make the code neater and helps further understand the basis of trigonometry at a deeper level.  

 

Part D: Design 

Purpose 

The design section goes over the design aspects of the circuit and housing cases that elevates the 

device’s ease of use and appearance. 

 

References 

https://www.thingiverse.com/thing:4483512 

  

https://www.thingiverse.com/thing:4483512


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

96 

 

Procedure 

Once prototyping of the project was complete on the breadboard, a PCB to house the hardware 

components as well as two 3D-printed cases were designed on EAGLE and Fusion360 

respectively. The PCB was designed with all components mounted on top with the touch buttons 

designed as pads leading back to the designated touch pin of the ESP32. A notable design feature 

is the cutout at the front which was designated for the servo motors to fit in between. Right under 

this cutout are the The servo and LiDAR wires that connect to the PCB to provide more mobility 

of the servos and sensor. Also the copper traces of the board were increased from to 28 milli-

inches (around 0.7 millimeters) to allow large current flow of the servo motors. In preparation of 

a case, M3 screw cutouts were made at the corners for mounting. 

After sending off the file to JLCPCBs, a case for the PCB and motors were designed in 

Fusion360, the brother of EAGLE. By importing the board file into Fusion, the outline of the 

PCB served as the shape. Through some extrusions and shellings, a suitable case was made for 

the PCB with M3 screw holes to mount the PCB onto the case. To touch it up, my name, the 

project name and the angle equation and law of cosines were printed on the side of the case. It 

should be noted that after thorough testing, the the angle equation printed on the side of this case 

is not correct and differs from the one implemented in the Arduino and processing sketches. The 

equation is as printed: 

 

𝛾 = cos−1(cos(𝑦𝑎𝑤1 − 𝑦𝑎𝑤2) × cos(𝑝𝑖𝑡𝑐ℎ1 − 𝑝𝑖𝑡𝑐ℎ2)) 

 

This only works when the pitch angle begins at 0. If the pitch angle began higher, the more it 

reaches 90°, the less accurate the angle will be. I therefore had to figure out another way of how 

to calculate it.  

 

The case for the motors was based around a premade case. Since the premade one was designed 

for only one motor, a rectangular base was made to keep the two servos stable. 

 

The results of the PCB was perfect and everything functioned as planned. When soldering, 

female and male headers were placed in case components need to be switched out. The cases, 

after generously being printed by a peer, were not so successful but still adequate. The PCB did 

not completey fit in the case and the screw holes were way too small. The servo case fit the 

servos perfectly but, the base was too narrow which lead the motors to move around when 

scanning. These problems were fixed through the use of sticky tack. Even with these issues, the 

cases and PCB managed to elevate the projects appearance and in the future, they will be 

improved in V2.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

97 

 

Media 

  

Using sticky tack to hold down th motor case Incorrect angle formula on the case (the bottom 

formula) 

 

YouTube video link: https://www.youtube.com/watch?v=frzUmAhQT3E 

 

https://www.youtube.com/watch?v=frzUmAhQT3E


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

98 

 

Code 

Arduino IDE 

 
  

// PROJECT  : The LiDAR Measurement Device 

// PURPOSE  : Measures the distance between two objects 

// COURSE   : ICS3U 

// AUTHOR   : Xander Chin 

// DATE     : March 27, 2021 

// MCU      : ESP32 

// STATUS   : Working 

// REFERENCE: 

// FIXES    :   

 

//bluetooth library 

#include "BluetoothSerial.h" 

BluetoothSerial SerialBT; 

 

#define touchPin1 32 

#define touchPin2 33 

#define threshold 30    //touch pin threshold 

 

bool statusClient; 

bool offlineMessage = true; 

bool onlineMessage = false; 

 

//-----------------------------// 

 

#include <HardwareSerial.h>   //UART connection to LiDAR 

HardwareSerial MySerial2(2); 

#include "TFMini.h" 

 

#define RXD2 16 

#define TXD2 17 

 

TFMini tfmini; 

 

//----------------------------// 

 

#include <Wire.h> 

#include <Adafruit_GFX.h> 

#include <Adafruit_SSD1306.h>   //I2C connection for OLED 

 

#define displayWidth 128 

#define displayHeight 64 

#define OLED_RESET -1 

 

Adafruit_SSD1306 display(displayWidth, displayHeight, &Wire, OLED_RESET); 

 

//--------------------------------// 

#include <ESP32Servo.h> 

 

Servo myServoX; 

Servo myServoY; 

#define servoPinX 5 

#define servoPinY 18 

 

#define encoderDT 27 

#define encoderCLK 26 

#define encoderButton 25 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

99 

 

 
  

 

#define offsetDistance 6    //offset distance from the center of the servo 

#define minServoX 1 

#define maxServoX 177 

#define minServoY 5 

#define maxServoY 180 

 

bool stateDT; 

bool stateCLK; 

bool lastStateCLK; 

bool lastStateDT; 

 

uint16_t distance; 

uint8_t posX; 

uint8_t posY; 

float realPosX; 

float realPosY; 

volatile bool movement; 

bool up; 

bool down; 

 

uint32_t lastTurn; 

 

//--------------------------------// 

float savedPosX; 

float savedPosY; 

uint16_t savedDistance; 

float result; 

bool buttonPressed = false; 

 

hw_timer_t * timer = NULL; 

portMUX_TYPE synch = portMUX_INITIALIZER_UNLOCKED; 

portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED; 

 

//interrupt 

void IRAM_ATTR isr() {         

  portENTER_CRITICAL(&synch); 

  portEXIT_CRITICAL(&synch);  

} 

 

//timer interrupt 

void IRAM_ATTR onTimer() { 

  portENTER_CRITICAL_ISR(&timerMux); 

  movement = true; 

  portEXIT_CRITICAL_ISR(&timerMux); 

} 

 

void setup() { 

  //serial monitor connection 

  //Serial.begin(115200); 

   

  //TFmini LiDAR serial connection 

  MySerial2.begin(115200); 

  MySerial2.setTimeout(1); 

  tfmini.begin(&MySerial2); 

   

  //OLED display I2C connection 

  Wire.begin();                                 

  display.begin(SSD1306_SWITCHCAPVCC, 0x3C); 

 

  //bluetooth serial connection 

  SerialBT.register_callback(callback);    

  SerialBT.begin("ESP32-LiDAR"); 

  SerialBT.setTimeout(1); 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

100 

 

 

 

  //servo setup 

  ESP32PWM::allocateTimer(0); 

  ESP32PWM::allocateTimer(1); 

  ESP32PWM::allocateTimer(2); 

  ESP32PWM::allocateTimer(3); 

  myServoX.setPeriodHertz(50);              //50hz servo 

  myServoY.setPeriodHertz(50);              //50hz servo 

  myServoX.attach(servoPinX, 200, 5000);    //PWM range 

  myServoY.attach(servoPinY, 200, 5000);    //PWM range 

 

  pinMode(encoderCLK, INPUT_PULLUP); 

  pinMode(encoderDT, INPUT_PULLUP); 

  pinMode(encoderButton, INPUT_PULLUP); 

   

  touchAttachInterrupt(T8, increment, threshold);   //pin 33 

  touchAttachInterrupt(T9, decrement, threshold);   //pin 32 

 

  //setup interrupts 

  timer = timerBegin(0, 80, true); 

  timerAttachInterrupt(timer, &onTimer, true); 

  timerAlarmWrite(timer, 50000, true); 

 

  //text setup for OLED 

  setupText(1, 0, 0); 

  display.println("LiDAR Measurement Device"); 

  display.display(); 

  display.clearDisplay(); 

} 

 

void loop() { 

  distance = tfmini.getDistance() + offsetDistance; 

  uint16_t strength = tfmini.getRecentSignalStrength(); 

  MySerial2.flush();    //clear buffer for no lag 

 

  //receiving data from bluetooth client 

  if (SerialBT.available() > 0 && statusClient) { 

    String serialData = SerialBT.readStringUntil('.'); 

    if(serialData.charAt(0) == 'x') { 

      posX = serialData.substring(1).toInt();  

    }   

    if(serialData.charAt(0) == 'y') { 

      posY = serialData.substring(1).toInt(); 

    } 

    SerialBT.flush();   //clear buffer for no lag 

  } 

 

  //servos overturn a bit 

  posX = constrain(posX, minServoX, maxServoX); 

  posY = constrain(posY, minServoY, maxServoY);     

  realPosX = mapFloat(posX, minServoX, maxServoX, 0, 180);    //actual angle of servos (servos 

overturn) 

  realPosY = mapFloat(posY, minServoY, maxServoY, 0, 180);    //actual angle of servos (servos 

overturn) 

   

  myServoX.write(posX);    

  myServoY.write(posY); 

 

  //send data over bluetooth to the client 

  if(statusClient) { 

    setupText(1, 0, 0); 

    display.println("Client BT online"); 

    display.println("Manual mode: off"); 

    if(onlineMessage) { 

      onlineMessage = false; 

      display.display(); 

    } 

    SerialBT.flush();   //prevent lag 

    SerialBT.println(String(distance)+","+String(realPosX)+","+String(realPosY)+","+  

String(strength)); 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

101 

 

  

 

  //manual control if the client is offline 

  if(!statusClient) { 

    if(offlineMessage) { 

      offlineMessage = false; 

      setupText(1, 0, 0); 

      display.println("Client BT offline"); 

      display.println("Manual mode: on"); 

      display.display(); 

      delay(3000);      //pause program and display message for three seconds 

    } 

 

    //read encoder and increase/decrease yaw 

    stateCLK = digitalRead(encoderCLK); 

    stateDT = digitalRead(encoderDT); 

    if(lastStateCLK == 1 && lastStateDT == 1) { 

      if(stateCLK == 0 || stateDT == 0) { 

        stateCLK == 0 ? posX++ : posX--;  

        lastTurn = millis(); 

      }  

    } 

    lastStateCLK = stateCLK; 

    lastStateDT = stateDT; 

 

    //read touch buttons and increase/decrease pitch 

    if(movement) { 

      if(up) posY++; 

      if(down) posY--; 

      up = false; 

      down = false; 

      movement = false; 

    } 

 

    //save a point 

    if(digitalRead(encoderButton) == 0) { 

      buttonPressed = true; 

      savedPosX = realPosX; 

      savedPosY = realPosY; 

      savedDistance = distance; 

    } else if(!buttonPressed) { 

      savedPosX = realPosX; 

      savedPosY = realPosY; 

      savedDistance = distance; 

    } 

 

    //do calculations 

    float x = degToRad(abs(realPosX - savedPosX)); 

    float y1 = degToRad(savedPosY); 

    float y2 = degToRad(realPosY); 

    result = cosineLaw(distance, savedDistance, calculateAngle(x, y1, y2)); 

 

    //display on OLED 

    if(millis() - lastTurn > 1000) { 

      setupText(1, 0, 0); 

      display.print("Distance: "); 

      display.print(distance); 

      display.println("cm"); 

      display.print("Strength: "); 

      display.println(strength); 

      display.println("x: " + String(realPosX)); 

      display.println("y: " + String(realPosY)); 

      display.println("--------------------"); 

      display.print("Result: "); 

      display.print(result); 

      display.println("cm"); 

      display.println("Manual mode: on"); 

      display.display();       

    } 

  }   

  timerAlarmEnable(timer);    //enable the interrupt  

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

102 

 

 
  

 

void setupText(uint8_t s, uint8_t x, uint8_t y) { 

  display.clearDisplay(); 

  display.setTextColor(WHITE); 

  display.setTextSize(s); 

  display.setCursor(x, y); 

} 

 

//dectects if bluetooth connection is offline or online 

void callback(esp_spp_cb_event_t event, esp_spp_cb_param_t *param) { 

  if(event == ESP_SPP_SRV_OPEN_EVT) { 

    statusClient = true; 

    onlineMessage = true; 

  } else if(event == ESP_SPP_CLOSE_EVT) { 

    statusClient = false;  

    offlineMessage = true; 

  } 

} 

 

float mapFloat(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, float out_max) 

{ 

  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; 

} 

 

void increment() { 

  up = true; 

} 

 

void decrement() { 

  down = true; 

} 

 

//-------------math functions----------------// 

 

float calculateAngle(float x, float y1, float y2) { 

  return acos(cos(y1)*cos(y2)*cos(x)+sin(y1)*sin(y2)); 

} 

 

float cosineLaw(float a, float b, float angle) { 

  return sqrt(pow(a, 2)+pow(b, 2)-2*a*b*cos(angle)); 

} 

 

float degToRad(float deg) { 

  return deg*(PI/180); 

} 

 

float radToDeg(float rad) { 

  return rad*(180/PI); 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

103 

 

Processing – LiDAR Measurement Sketch 

 

/ PROJECT  : The LiDAR Measurement Device Bluetooth Control 

// PURPOSE  : Creates a point cloud where you can measure distances using bluetooth 

// COURSE   : ICS3U 

// AUTHOR   : Xander Chin 

// DATE     : March 27, 2021 

// MCU      : ESP32 

// STATUS   : Working 

// REFERENCE: 

// FIXES    :   

 

//import serial library to communicate with arduino 

import processing.serial.*; 

Serial myPort; 

 

//set max and min servo positions 

static byte minServoX = 1; 

static int maxServoX = 177; 

static byte minServoY = 5; 

static int maxServoY = 180; 

 

float xPos = 0; 

float yPos = 0; 

float xPosIncrement = 0; 

float yPosIncrement = 0; 

float distance; 

float yaw; 

float pitch; 

float strength; 

float lineDistance; 

String serialData = ""; 

String[] components; 

boolean change; 

PFont font; 

 

//number of points to measure 

int numberOfPoints = 10; 

 

byte dataPoint1 = 0; 

byte dataPoint2 = 0; 

 

float[][] data = new float[numberOfPoints][3]; 

 

Text[] points = new Text[numberOfPoints]; 

Text[] pointsInfo = new Text[numberOfPoints]; 

Text current; 

Text selectedPoint1; 

Text selectedPoint2; 

 

void setup() { 

  size(1300, 800);    //setup 2D canvas 

   

  //serial setup 

  String portName = Serial.list()[1]; 

  myPort = new Serial(this, portName, 115200); 

  myPort.bufferUntil('\n'); 

   

  //load font 

  font = loadFont("AppleMyungjo-50.vlw"); 

  textFont(font, 50); 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

104 

 

 
  

   

  //initialize array to avoid null pointer exceptions 

  points[0] = new Text("Current", 70, 150, 30); 

  pointsInfo[0] = new Text("", 70, 100, 30); 

  for(byte x = 1; x < numberOfPoints; x++) { 

    points[x] = new Text("Point " + x, 1050, 50*x, 30); 

    pointsInfo[x] = new Text("x: null  y: null  nullcm", 700, 50*x, 20); 

  } 

   

  //current = new Text("Current", 70, 100, 30); 

  selectedPoint1 = new Text("Current", 350, 600, 50);   

  selectedPoint2 = new Text("Current", 750, 600, 50); 

} 

 

void draw() {   

  background(0); 

   

  //current distance servo yaw pitch angles 

  textSize(30); 

  fill(255); 

  text(distance + "cm", 70, 200); 

  text("Yaw: " + yaw + "°", 70, 250); 

  text("Pitch: " + pitch + "°", 70, 300); 

  text("Signal Strength: " + strength, 70, 350); 

   

  textSize(50); 

  fill(237, 180, 34); 

  text("--->", 580, 600); 

   

  lineDistance = calculateDistance();   

  fill(255); 

  textSize(50); 

  text(lineDistance + "cm", 550, 675); 

   

  //display configurable points 

  for(byte x = 0; x < numberOfPoints; x++) {       

    if(points[x].collision(mouseX, mouseY)) { 

      points[x].highlight = true; 

      if(x != 0) pointsInfo[x].display(); 

    } else { 

      points[x].highlight = false; 

    } 

    points[x].display();    

  } 

   

  //if hovering over point 1 

  if(selectedPoint1.collision(mouseX, mouseY)) { 

    selectedPoint1.highlight = true;    

  } else { 

    selectedPoint1.highlight = false; 

  } 

   

  //if hovering over point 2 

  if(selectedPoint2.collision(mouseX, mouseY)) { 

    selectedPoint2.highlight = true;    

  } else { 

    selectedPoint2.highlight = false; 

  } 

     

  xPos += xPosIncrement; 

  yPos += yPosIncrement;   

  xPos = constrain(xPos, minServoX, maxServoX);  

  yPos = constrain(yPos, minServoY, maxServoY); 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

105 

 

  

   

  //send out data to arduino 

  if(!change) { 

    myPort.write("x" + xPos + ".");  

  }   

  if(change) { 

    myPort.write("y" + yPos + "."); 

  }   

  change = !change;  

   

  //display text 

  selectedPoint1.display(); 

  selectedPoint2.display(); 

} 

 

void configurePointInfo(byte x) { 

  data[x][0] = distance; 

  data[x][1] = yaw; 

  data[x][2] = pitch;     

  pointsInfo[x].updateTextTo("x: " + data[x][1] + " y: " + data[x][2] + "  " + data[x][0] + 

"cm"); 

} 

 

//happens when serial data is received 

void serialEvent(Serial myPort) { 

   serialData = myPort.readStringUntil('\n'); 

   serialData = serialData.substring(0, serialData.length() - 1); 

   components = split(serialData, ','); 

   distance = float(components[0]); 

   yaw = float(components[1]); 

   pitch = float(components[2]); 

   strength = float(components[3]); 

    

   data[0][0] = distance; 

   data[0][1] = yaw; 

   data[0][2] = pitch; 

} 

 

//class object Text for selecting, changing font and highlighting 

public class Text { 

  String text; 

  int textPosX; 

  int textPosY; 

  float textWidth; 

  int textSize; 

  boolean highlight = false; 

  boolean selected = false; 

   

  Text(String string, int x, int y, int z) { 

    text = string; 

    textPosX = x; 

    textPosY = y; 

    textSize = z; 

    textSize(textSize);    //initialize text size before calculating text width  

    textWidth = textWidth(string); 

  } 

   

  void display() { 

    if(highlight) { 

      fill(255); 

    } else { 

      fill(237, 180, 34); 

    } 

     

    if(selected) fill(173, 23, 203); 

     

    textSize(textSize); 

    text(text, textPosX, textPosY, textWidth); 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

106 

 

 
  

   

  void updateTextTo(String string) { 

    text = string; 

  } 

   

  boolean collision(float mouseX, float mouseY) { 

    if(mouseX >= textPosX && mouseX <= textPosX + textWidth) { 

      if(mouseY >= textPosY - textSize && mouseY <= textPosY) { 

        return true; 

      } 

    }     

    return false; 

  }  

} 

 

void keyPressed() {   

  if(key == 'a') xPosIncrement = 0.5;  

  if(key == 'A') xPosIncrement = 0.1;  

  if(key == 'd') xPosIncrement = -0.5; 

  if(key == 'D') xPosIncrement = -0.1; 

  if(key == 'w') yPosIncrement = 0.5; 

  if(key == 'W') yPosIncrement = 0.1; 

  if(key == 's') yPosIncrement = -0.5; 

  if(key == 'S') yPosIncrement = -0.1; 

  if(key == ' ') { 

    for(byte x = 0; x < numberOfPoints; x++) { 

      if(points[x].highlight) { 

        xPos = map(data[x][1], 0, 180, minServoX, maxServoX); 

        yPos = map(data[x][2], 0, 180, minServoY, maxServoY); 

      } 

    } 

  } 

} 

 

void keyReleased() { 

  if(key == 'a') xPosIncrement = 0;  

  if(key == 'A') xPosIncrement = 0; 

  if(key == 'd') xPosIncrement = 0; 

  if(key == 'D') xPosIncrement = 0; 

  if(key == 'w') yPosIncrement = 0; 

  if(key == 'W') yPosIncrement = 0; 

  if(key == 's') yPosIncrement = 0; 

  if(key == 'S') yPosIncrement = 0; 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

107 

 

 

 

void mousePressed() { 

  for(byte x = 0; x < numberOfPoints; x++) { 

    if(points[x].collision(mouseX, mouseY)) {       

      if(!selectedPoint1.selected && !selectedPoint2.selected) { 

        configurePointInfo(x); 

      } 

       

      if(selectedPoint1.selected) { 

        if(x == 0) { 

          selectedPoint1.updateTextTo("Current"); 

        } else { 

          selectedPoint1.updateTextTo("Point " + x); 

        } 

        selectedPoint1.selected = false; 

        dataPoint1 = x; 

      } 

       

      if(selectedPoint2.selected) { 

        if(x == 0) { 

          selectedPoint2.updateTextTo("Current"); 

        } else { 

          selectedPoint2.updateTextTo("Point " + x); 

        } 

        selectedPoint2.selected = false; 

        dataPoint2 = x; 

      } 

    } 

  } 

 

  if(selectedPoint1.collision(mouseX, mouseY)) selectedPoint1.selected = 

!selectedPoint1.selected; 

  if(selectedPoint2.collision(mouseX, mouseY)) selectedPoint2.selected = 

!selectedPoint2.selected; 

} 

 

void mouseReleased() { 

  if(selectedPoint1.selected && selectedPoint2.selected) { 

    selectedPoint1.selected = false; 

    selectedPoint2.selected = false; 

  } 

} 

 

//---------------math functions-----------------// 

float calculateDistance() {     

  float x = degToRad(abs(data[dataPoint1][1] - data[dataPoint2][1])); 

  float y1 = degToRad(data[dataPoint1][2]); 

  float y2 = degToRad(data[dataPoint2][2]); 

  return cosineLaw(data[dataPoint1][0], data[dataPoint2][0], calculateAngle(x, y1, y2)); 

} 

 

float calculateAngle(float x, float y1, float y2) { 

  return acos(cos(y1)*cos(y2)*cos(x)+sin(y1)*sin(y2)); 

} 

 

float cosineLaw(float a, float b, float angle) { 

  return sqrt(pow(a, 2)+pow(b, 2)-2*a*b*cos(angle)); 

} 

 

float degToRad(float deg) { 

  return deg*(PI/180); 

} 

 

float radToDeg(float rad) { 

  return rad*(180/PI); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

108 

 

 

Processing – LiDAR Point Cloud 

 
  

// PROJECT  : The LiDAR Point Cloud 

// PURPOSE  : Creates a point cloud where you can measure distances 

// COURSE   : ICS3U 

// AUTHOR   : Xander Chin 

// DATE     : March 27, 2021 

// MCU      : ESP32 

// STATUS   : Working 

// REFERENCE: 

// FIXES    :   

 

//serial library to communicate with arduino 

import processing.serial.*; 

Serial myPort; 

 

//camera controlled with mouse 

import peasy.*; 

PeasyCam cam; 

PeasyDragHandler PanDragHandler; 

 

//font 

PFont font; 

 

//sets max servo positions 

static byte minServoX = 1; 

static int maxServoX = 177; 

static byte minServoY = 5; 

static int maxServoY = 180; 

 

String serialData; 

String[] components; 

float distance; 

float yaw; 

float pitch; 

float strength; 

float xPos; 

float yPos; 

float zPos; 

ArrayList<PVector> vectors; 

 

//camera offset 

float angle = -0.3; 

float xOffset = 3; 

float yOffset = 152; 

float scale = 2.5; 

float angleIncrement = 0; 

float xOffsetIncrement = 0; 

float yOffsetIncrement = 0; 

float scaleIncrement = 0; 

 

//customizable elements of the point cloud 

boolean change; 

boolean play; 

boolean writePoints = true; 

boolean displayPoints = true; 

boolean displayBoundaries; 

boolean coordinateAxis = true; 

boolean displayHUD = true; 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

109 

 

 

 

int lastMove; 

float servoX = minServoX; 

float servoY = minServoY; 

float servoXIncrement = 0; 

float servoYIncrement = 0; 

float scanInterval = 25; 

float scanIntervalInc; 

float minServoScanX = minServoX; 

float maxServoScanX = maxServoX; 

float minServoScanY = minServoY; 

float maxServoScanY = map(90, 0, 180, minServoY, maxServoY); 

float minServoScanXInc; 

float maxServoScanXInc; 

float minServoScanYInc; 

float maxServoScanYInc; 

int xSpeed = 1; 

 

//info colours and number of points 

byte numberOfPoints = 9; 

boolean[] pressed = new boolean[numberOfPoints]; 

float[][][] data = new float[numberOfPoints][2][3]; 

float[] distancePoint = new float[numberOfPoints]; 

color[] colour = {color(255, 0, 0), color(255, 165, 0), color(255, 255, 0), 

                  color(165, 225, 0), color(0, 255, 0), color(0, 255, 255),  

                  color(0, 0, 255), color(165, 0, 255), color(255, 0, 255) }; 

 

Info[] info = new Info[numberOfPoints]; 

IntList distanceColours; 

IntList strengthColours; 

byte mode = 0; 

String textMode; 

int maxColourDistance = 500; 

int maxColDistanceInc = 0; 

int maxDistance = 1200; 

int maxDistanceInc = 0; 

int maxStrength = 2000; 

 

void setup() {   

  size(1400, 800, P3D);                                   //setup canvas 

  perspective(PI/3.0, (float)width/height, 1, 100000);    //prevent clipping 

  vectors = new ArrayList<PVector>();                     //list to store data from arduino 

  distanceColours = new IntList();                        //list to store data from arduino 

  strengthColours = new IntList();                        //list to store data from arduino 

   

  //camera for movement 

  cam = new PeasyCam(this, 0, 0, 0, 1200); 

  cam.setMinimumDistance(0.01); 

  cam.setMaximumDistance(10000); 

  PanDragHandler = cam.getPanDragHandler(); 

  cam.setLeftDragHandler(PanDragHandler); 

   

  //set up bluetooth serial connection 

  String portName = Serial.list()[1]; 

  myPort = new Serial(this, portName, 115200); 

  myPort.bufferUntil('\n'); 

   

  font = loadFont("AppleMyungjo-50.vlw");    //load font into sketch 

  textFont(font, 50); 

   

  //initialize customizable point info 

  for(byte x = 0; x < numberOfPoints; x++) { 

    info[x] = new Info((x+1) + ":", distancePoint[x], 1050, 230+(30*x), 20, colour[x]); 

  } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

110 

 

 

 

void draw() { 

  background(0);                        //set background to black 

  rotateY(angle);                       //rotate everything by angle 

   

  //current position of lidar sensor 

  stroke(255, 0, 0); 

  strokeWeight(3); 

  line(xOffset, yOffset, 0, xPos * scale + xOffset, -zPos * scale + yOffset, -yPos * scale); 

   

  for(int index = 0; index < vectors.size(); index++) { 

    PVector v = vectors.get(index); 

    color pointColour; 

    float magnitude = v.mag();   

     

    //colour modes 

    switch(mode) { 

      case 0: 

        pointColour = color(255); 

        textMode = "Regular"; 

        break; 

      case 1: 

        pointColour = distanceColours.get(index); 

        textMode = "Distance"; 

        break; 

      case 2:  

        pointColour = strengthColours.get(index);  

        textMode = "Strength"; 

        break; 

      default:  

        pointColour = color(255); 

        textMode = "Regular"; 

        break; 

    }  

     

    //display points in 3d space  

    stroke(pointColour); 

    strokeWeight(1); 

    if(displayPoints && magnitude <= maxDistance) {       

      point(v.x * scale + xOffset, -v.z * scale + yOffset, -v.y * scale); 

    } 

  } 

   

  //create lines from selected points in the scan 

  for(byte i = 0; i < numberOfPoints; i++) { 

    float distance1 = data[i][0][0]; 

    float distance2 = data[i][1][0]; 

    float yaw1 = data[i][0][1]; 

    float yaw2 = data[i][1][1]; 

    float pitch1 = data[i][0][2]; 

    float pitch2 = data[i][1][2]; 

     

    if(pressed[i]) { 

      distance2 = distance; 

      yaw2 = yaw; 

      pitch2 = pitch; 

    } 

    float azimuth = degToRad(abs(yaw1 - yaw2)); 

    float elevation1 = degToRad(pitch1); 

    float elevation2 = degToRad(pitch2); 

    distancePoint[i] = cosineLaw(distance1, distance2, calculateAngle(azimuth, elevation1, ele

vation2)); 

     

    float x1 = coordinateX(distance1, yaw1, pitch1); 

    float y1 = coordinateY(distance1, yaw1, pitch1); 

    float z1 = coordinateZ(distance1, pitch1); 

     

    float x2 = coordinateX(distance2, yaw2, pitch2); 

    float y2 = coordinateY(distance2, yaw2, pitch2); 

    float z2 = coordinateZ(distance2, pitch2); 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

111 

 

 
  

     

    info[i].createLine(x1*scale+xOffset, -z1*scale+yOffset, -y1*scale, x2*scale+xOffset, -

z2*scale+yOffset, -y2*scale); 

  } 

   

  //display scan boundaries 

  if(displayBoundaries) { 

    float minX = map(minServoScanX, minServoX, maxServoX, 0, 180); 

    float maxX = map(maxServoScanX, minServoX, maxServoX, 0, 180); 

    float minY = map(minServoScanY, minServoY, maxServoY, 0, 180); 

    float maxY = map(maxServoScanY, minServoY, maxServoY, 0, 180); 

     

    float x1 = coordinateX(2000, minX, minY); 

    float y1 = coordinateY(2000, minX, minY); 

    float z1 = coordinateZ(2000, minY); 

     

    float x2 = coordinateX(2000, minX, maxY); 

    float y2 = coordinateY(2000, minX, maxY); 

    float z2 = coordinateZ(2000, maxY); 

     

    float x3 = coordinateX(2000, maxX, maxY); 

    float y3 = coordinateY(2000, maxX, maxY); 

    float z3 = coordinateZ(2000, maxY); 

     

    float x4 = coordinateX(2000, maxX, minY); 

    float y4 = coordinateY(2000, maxX, minY); 

    float z4 = coordinateZ(2000, minY); 

     

    stroke(255, 0, 0); 

    strokeWeight(1); 

    line(xOffset, yOffset, 0, x1*scale+xOffset, -z1*scale+yOffset, -y1*scale); 

    line(xOffset, yOffset, 0, x2*scale+xOffset, -z2*scale+yOffset, -y2*scale); 

    line(xOffset, yOffset, 0, x3*scale+xOffset, -z3*scale+yOffset, -y3*scale); 

    line(xOffset, yOffset, 0, x4*scale+xOffset, -z4*scale+yOffset, -y4*scale); 

  } 

   

  //display coordinate axis 

  if(coordinateAxis) { 

    stroke(255); 

    strokeWeight(1); 

    line(xOffset, yOffset, 0, 300*scale+xOffset, yOffset, 0); 

    line(xOffset, yOffset, 0, -300*scale+xOffset, yOffset, 0); 

    line(xOffset, yOffset, 0, xOffset, yOffset, -300*scale); 

    line(xOffset, yOffset, 0, xOffset, yOffset, 300*scale); 

    line(xOffset, yOffset, 0, xOffset, -100, 0); 

    fill(255); 

    textSize(50); 

    text("0°", 300*scale+xOffset, yOffset, 0); 

    text("90°", xOffset, yOffset, -300*scale); 

    text("180°", -300*scale+xOffset, yOffset, 0); 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

112 

 

 
  

   

  //2D text creation showing info 

  if(displayHUD) { 

    cam.beginHUD(); 

    textSize(20);  

    fill(255); 

    String state1 = displayPoints ? "ON" : "OFF"; 

    String state2 = writePoints ? "ON" : "OFF"; 

    String state3 = displayBoundaries ? "ON" : "OFF"; 

    String state4 = coordinateAxis ? "ON" : "OFF"; 

    float realMinDomainX = map(minServoScanX, minServoX, maxServoX, 0, 180); 

    float realMaxDomainX = map(maxServoScanX, minServoX, maxServoX, 0, 180); 

    float realMinRangeY = map(minServoScanY, minServoY, maxServoY, 0, 180); 

    float realMaxRangeY = map(maxServoScanY, minServoY, maxServoY, 0, 180); 

    text("Display Points: " + state1, 1050, 50); 

    text("Create Points: " + state2, 1050, 70); 

    text("Display Scan Boundaries: " + state3, 1050, 90); 

    text("Axis: " + state4, 1050, 110); 

     

    text(distance + "cm", 50, 50); 

    text("Signal Strength: " + strength, 50, 70); 

    text("Yaw: " + yaw + "°", 50, 90); 

    text("Pitch: " + pitch + "°", 50, 110); 

     

    text("Max Distance: " + maxDistance + "cm", 1050, 570); 

    text("Max Colour Distance: " + maxColourDistance + "cm", 1050, 590); 

    text("Scan Interval: " + scanInterval + "ms", 1050, 610); 

    text("Domain of Scan: (" + nf(realMinDomainX, 0, 1) + ", " + nf(realMaxDomainX, 0, 1) + 

")", 1050, 650); 

    text("Range of Scan: (" + nf(realMinRangeY, 0, 1) + ", " + nf(realMaxRangeY, 0, 1) + ")", 

1050, 670); 

    text("Mode: " + textMode, 1050, 720); 

     

    for(byte x = 0; x < numberOfPoints; x++) { 

      String selected = pressed[x] ? "•" : " "; 

      info[x].updateInfoTo(selected + (x+1) + ":", distancePoint[x]); 

      info[x].display(); 

    } 

    cam.endHUD(); 

  } 

   

  //servo scanning  

  if(play) { 

    if(millis() - scanInterval > lastMove) { 

      servoX = servoX + xSpeed; 

      if(servoX > maxServoScanX) { 

        servoX = maxServoScanX; 

        xSpeed = -1; 

        servoY++; 

      } else if(servoX < minServoScanX) { 

        servoX = minServoScanX; 

        xSpeed = 1; 

        servoY++; 

      } 

      if(servoY > maxServoScanY) { 

        writePoints = false; 

        servoX = minServoScanX; 

        servoY = minServoScanY; 

        play = false; 

      } 

      lastMove = millis(); 

    } 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

113 

 

 
  

     

  servoX += servoXIncrement; 

  servoY += servoYIncrement; 

  minServoScanX += minServoScanXInc; 

  maxServoScanX += maxServoScanXInc; 

  minServoScanY += minServoScanYInc; 

  maxServoScanY += maxServoScanYInc; 

  minServoScanX = constrain(minServoScanX, minServoX, maxServoScanX + 5); 

  maxServoScanX = constrain(maxServoScanX, minServoScanX + 5, maxServoX); 

  minServoScanY = constrain(minServoScanY, minServoY, maxServoScanY + 5); 

  maxServoScanY = constrain(maxServoScanY, minServoScanY + 5, maxServoY); 

  servoX = constrain(servoX, minServoX, maxServoX);  

  servoY = constrain(servoY, minServoY, maxServoY); 

   

  //send data to arduino 

  if(!change) { 

    myPort.write("x" + servoX + ".");  

  }   

  if(change) { 

    myPort.write("y" + servoY + "."); 

  }   

  change = !change;  

   

  angle += angleIncrement; 

  xOffset += xOffsetIncrement; 

  yOffset += yOffsetIncrement; 

  scale += scaleIncrement; 

  maxDistance += maxDistanceInc; 

  maxColourDistance += maxColDistanceInc; 

  scanInterval += scanIntervalInc; 

  maxDistance = constrain(maxDistance, 0, 2000); 

  maxColourDistance = constrain(maxColourDistance, 0, 2000); 

  scanInterval = constrain(scanInterval, 2, 100); 

} 

 

//if data is sent over from the arudino 

void serialEvent(Serial myPort) { 

   serialData = myPort.readStringUntil('\n'); 

   serialData = serialData.substring(0, serialData.length() - 1); 

   components = split(serialData, ','); 

   distance = float(components[0]); 

   yaw = float(components[1]); 

   pitch = float(components[2]); 

   strength = float(components[3]); 

    

   xPos = coordinateX(distance, yaw, pitch); 

   yPos = coordinateY(distance, yaw, pitch); 

   zPos = coordinateZ(distance, pitch); 

    

   color colourDistance = color(255); 

   float q1 = maxColourDistance >> 2; 

   float mid = maxColourDistance >> 1; 

   float q3 = (maxColourDistance >> 1) + (maxColourDistance >> 2); 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

114 

 

 
  

    

   //color gradient of distance 

   if(distance <= q1) { 

     colourDistance = lerpColor(color(255, 0, 0), color(255, 255, 0), norm(distance, 0, q1)); 

   } else if(distance >= q1 && distance <= mid) { 

     colourDistance = lerpColor(color(255, 255, 0), color(0, 255, 0), norm(distance, q1, 

mid)); 

   } else if(distance >= mid && distance <= q3) { 

     colourDistance = lerpColor(color(0, 255, 0), color(0, 255, 255), norm(distance, mid, 

q3)); 

   } else if(distance >= q3) { 

     colourDistance = lerpColor(color(0, 255, 255), color(0, 0, 255), norm(distance, q3, 

maxColourDistance)); 

   } else { 

     colourDistance = color(255); 

   } 

    

   //color gradient of strength 

   float i = norm(strength, 0, maxStrength); 

   color colourStrength = lerpColor(color(255, 0, 0), color(0, 255, 0), i);  

    

   //add to array list of vectors and colors 

   if(writePoints) { 

     distanceColours.append(color(colourDistance)); 

     strengthColours.append(color(colourStrength)); 

     vectors.add(new PVector(xPos, yPos, zPos)); 

   } 

} 

 

public class Info { 

  String text; 

  float measurement; 

  int textPosX; 

  int textPosY; 

  int textSize; 

  color colour; 

   

  Info(String string, float m, int x, int y, int z, color c) { 

    text = string; 

    measurement = m; 

    textPosX = x; 

    textPosY = y; 

    textSize = z; 

    colour = c; 

  } 

   

  void display() { 

    fill(colour); 

    textSize(textSize); 

    text(text, textPosX, textPosY); 

    text(nf(measurement, 0, 2) + "cm", textPosX + 100, textPosY); 

  } 

   

  void updateInfoTo(String string, float m) { 

    text = string; 

    measurement = m; 

  } 

   

  void createLine(float x1, float y1, float z1, float x2, float y2, float z2) { 

    stroke(colour); 

    strokeWeight(2); 

    line(x1, y1, z1, x2, y2, z2); 

  } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

115 

 

 
  

 

void keyPressed() { 

  if(key == 'w' && !play) servoYIncrement = 0.5; 

  if(key == 'W' && !play) servoYIncrement = 0.1; 

  if(key == 's' && !play) servoYIncrement = -0.5; 

  if(key == 'S' && !play) servoYIncrement = -0.1; 

  if(key == 'a' && !play) servoXIncrement = 0.5; 

  if(key == 'A' && !play) servoXIncrement = 0.1; 

  if(key == 'd' && !play) servoXIncrement = -0.5;  

  if(key == 'D' && !play) servoXIncrement = -0.1;  

  if(key == 'f') xOffsetIncrement = 1f; 

  if(key == 'h') xOffsetIncrement = -1f; 

  if(key == 't') yOffsetIncrement = 1f; 

  if(key == 'g') yOffsetIncrement = -1f; 

  if(key == ' ') play = !play; 

  if(key == 'c') writePoints = !writePoints; 

  if(key == 'z') displayPoints = !displayPoints; 

  if(key == '-') maxDistanceInc = -3; 

  if(key == '=') maxDistanceInc = 3; 

  if(key == '_') maxColDistanceInc = -3; 

  if(key == '+') maxColDistanceInc = 3; 

  if(key == '[') scanIntervalInc = -0.5; 

  if(key == ']') scanIntervalInc = 0.5; 

  if(key == 'L' && !play) maxServoScanXInc = 0.5; 

  if(key == '"' && !play) maxServoScanXInc = -0.5; 

  if(key == 'l' && !play) minServoScanXInc = 0.5; 

  if(key == 39 && !play) minServoScanXInc = -0.5;    // ' key 

  if(key == 'p' && !play) maxServoScanYInc = 0.5; 

  if(key == ';' && !play) maxServoScanYInc = -0.5; 

  if(key == 'P' && !play) minServoScanYInc = 0.5; 

  if(key == ':' && !play) minServoScanYInc = -0.5; 

  if(key == ',') coordinateAxis = !coordinateAxis; 

  if(key == '.') displayBoundaries = !displayBoundaries;    

  if(key == '/') displayHUD = !displayHUD; 

  if (key =='x') {    // erase all points 

    vectors.clear(); 

    distanceColours.clear(); 

    strengthColours.clear(); 

  } 

  if(key == 'm') { 

    if(mode < 2) mode++; 

      else if(mode >= 2) mode = 0;     

  }  

  if (key == 'r' && !play) { 

    writePoints = false; 

    servoX = minServoScanX; 

    servoY = minServoScanY; 

  }  

  if (key == CODED) { 

    if (keyCode == LEFT) angleIncrement = 0.015f;    // rotate left 

    if (keyCode == RIGHT) angleIncrement = -0.015f;  // rotate right 

    if (keyCode == UP) scaleIncrement = 0.02f;       //zoom in      

    if (keyCode == DOWN) scaleIncrement = -0.02f;    //zoom out 

  }    

  for(byte x = 0; x < numberOfPoints; x++) { 

    if(key == x + 49) {      

      data[x][int(pressed[x])][0] = distance; 

      data[x][int(pressed[x])][1] = yaw; 

      data[x][int(pressed[x])][2] = pitch; 

      pressed[x] = !pressed[x]; 

    } 

  } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

116 

 

 

 

void keyReleased() { 

  if(key == 'w' && !play) servoYIncrement = 0; 

  if(key == 'W' && !play) servoYIncrement = 0;         

  if(key == 's' && !play) servoYIncrement = 0; 

  if(key == 'S' && !play) servoYIncrement = 0; 

  if(key == 'a' && !play) servoXIncrement = 0; 

  if(key == 'A' && !play) servoXIncrement = 0; 

  if(key == 'd' && !play) servoXIncrement = 0; 

  if(key == 'D' && !play) servoXIncrement = 0; 

  if(key == 'f') xOffsetIncrement = 0f;     

  if(key == 'h') xOffsetIncrement = 0f;     

  if(key == 't') yOffsetIncrement = 0f;     

  if(key == 'g') yOffsetIncrement = 0f; 

  if(key == '-') maxDistanceInc = 0; 

  if(key == '=') maxDistanceInc = 0; 

  if(key == '_') maxColDistanceInc = 0; 

  if(key == '+') maxColDistanceInc = 0; 

  if(key == '[') scanIntervalInc = 0; 

  if(key == ']') scanIntervalInc = 0; 

  if(key == 'L' && !play) maxServoScanXInc = 0; 

  if(key == '"' && !play) maxServoScanXInc = 0; 

  if(key == 'l' && !play) minServoScanXInc = 0; 

  if(key == 39 && !play) minServoScanXInc = 0; 

  if(key == 'p' && !play) maxServoScanYInc = 0; 

  if(key == ';' && !play) maxServoScanYInc = 0; 

  if(key == 'P' && !play) minServoScanYInc = 0; 

  if(key == ':' && !play) minServoScanYInc = 0;   

  if (key == CODED) { 

    if (keyCode == LEFT) angleIncrement = 0f;       

    if (keyCode == RIGHT) angleIncrement = 0f;       

    if (keyCode == UP) scaleIncrement = 0f;       

    if (keyCode == DOWN) scaleIncrement = 0f; 

  } 

} 

 

//------------math functions-------------// 

/*float calculateDistance() {     

  float x = degToRad(abs(data[dataPoint1][1] - data[dataPoint2][1])); 

  float y = degToRad(abs(data[dataPoint1][2] - data[dataPoint2][2])); 

  return cosineLaw(data[dataPoint1][0], data[dataPoint2][0], calculateAngle(x, y)); 

}*/ 

 

float coordinateX(float d, float x, float y) { 

  return d*cos(degToRad(x))*cos(degToRad(y)); 

} 

 

float coordinateY(float d, float x, float y) { 

  return d*sin(degToRad(x))*cos(degToRad(y));    

} 

 

float coordinateZ(float d, float y) { 

  return d*sin(degToRad(y)); 

} 

 

float calculateAngle(float x, float y1, float y2) { 

  return acos(cos(y1)*cos(y2)*cos(x)+sin(y1)*sin(y2)); 

} 

 

float cosineLaw(float a, float b, float angle) { 

  return sqrt(pow(a, 2)+pow(b, 2)-2*a*b*cos(angle)); 

} 

 

float degToRad(float deg) { 

  return deg*(PI/180); 

} 

 

float radToDeg(float rad) { 

  return rad*(180/PI); 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

117 

 

Reflection 

I am tired. Very, very tired and exhausted from working on this project, writing this report and 

making the video. So tired in fact that I really just want to go to sleep. There are some things that 

I do want to fix such as the math equation sizes, inserting some more pictures, scaling down the 

image sizes, likely spelling and grammar mistakes, and the list goes on but I really do not have 

the energy right now to do so (it is 3am). I will definitely fix up this report first thing in the 

morning however.  

 

Even with the amount of work I put in and life sucked out of me, I loved making it from 

prototyping it, to designing my first PCB in EAGLE, to developing the processing sketches and 

seeing them scan the room, to sitting down and trying to solve the required math equations and 

the list goes on an on. I love how I got to incorporate math as well as the three domains of an 

engineer which are hardware, software, and design. Throughout the process, I had to problem 

solve in every domain which helped me grow as a person, however, I believe I tried to solve to 

many problems and incorporate too many ideas as I ran out of time and am submitting my report 

after the deadline. This is also why I am currently exhausted. Therefore, the experience has 

taught me to focus more on actually completeing the report and video instead of just focusing on 

building because building is fun while writing… not so much. But, even with this setback, this 

was definitely my favorite project to complete as I really care and had a lot of fun doing it. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

118 

 

Project 2.7: Mechanical 

Purpose 

The purpose of this project is to explore and make use of the different types of motors available 

which are DC hobby motors, servo motors, and stepper motors.  

 

References 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html 

https://www.makecrate.club/how-does-a-photoresistor-work/71182/ 

https://www.gadgetronicx.com/attiny85-timer-tutorial-generating-time-delay-interrupts/ 

https://www.gadgetronicx.com/attiny85-compare-match-tutorial-interrupts/ 

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-AVR-8-bit-Microcontroller-

ATtiny25-ATtiny45-ATtiny85_Datasheet-Summary.pdf 

 

Procedure 

For this project, a simple electronic sunflower 

was made that followed a source of light or  

avoided darkness which adheres to the myth that 

sunflowers always face the sun. It also provides 

more efficiency if a solar cell is mounted onto it 

as it will always receive the most amount of 

sunlight that it can. To begin, a servo motor as 

well as an extra pan and tilt kit came in handy to 

create the base that turns left and right. The servo 

motor, an MG995, was the same one used in the LiDAR measurement device. As discussed 

before, it uses three pins, VCC, GND, and the PWM pin controlling the servos position from 0 to 

180 degrees. At first it was decided that two servo motors were used for a full range of motion, 

however, this proved too complicated and so only one was used. The microcontroller driving the 

device is an ATtiny85. 

 

 

 

 

 

 

 

 

 

 

 

Parts Table 

Quantity Description 

1 ATtiny85 

1 Mini breadboard 

1 MG995 servo motor 

1 5mm red LED 

2 10 k LDR 

2 4.7 k fixed resistor 

http://darcy.rsgc.on.ca/ACES/TEI3M/2021/Tasks.html
https://www.makecrate.club/how-does-a-photoresistor-work/71182/
https://www.gadgetronicx.com/attiny85-timer-tutorial-generating-time-delay-interrupts/
https://www.gadgetronicx.com/attiny85-compare-match-tutorial-interrupts/
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet-Summary.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet-Summary.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

119 

 

With the base complete, the light sensing 

mechanism was needed to move the device 

around accordingly. Here, two equally resistant 

photoresistors or light depended resistors (LDR) 

were used to detect which side of the device had 

greater amount of light. To do this, the 

photoresistors were placed in a classic voltage 

divider formation shown on the right. Since these 

sensors creates a variable resistance in between 

them according to the light level, with light 

decreasing the resistance and darkness increasing 

it, the output voltage of the circuit varies 

according to the comparison of light levels on both sensors. With a higher light level on the first 

LDR, resistance drops creating a voltage higher than half of the input voltage on the output pin 

and when a higher light level is present on the second LDR, the voltage drops below half of the 

input voltage. This simple and effective design only uses up one analog pin on the NANO to read 

the incoming voltage attained from the circuit using the revisited Kirchhoff’s voltage law:  

 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ·
𝑅2

𝑅1 + 𝑅2
  

 

Photoresistors are quite a common variable 

resistor used as a sensor in many analog and 

digital circuits with its iconic look pictured on the 

right. It varies the amount of current flow through 

its construction material of a semi-conductor, 

similar to a transistor. The procedure works 

almost identically to one. Inside, it has three 

bands with electrons arranged in them so that they 

have similar energy levels to one another. These 

bands are the valance band, where electrons 

cannot move the least freely and the conduction 

band, where electrons can move around almost 

normally. Separating these two bands is a gap 

called the energy gap. This layout of bands and 

gaps, again are similar to an NPN or PNP layout. 

Electrons are restricted in their flow depending on 

the state of the valance band and when the LDR is 

saturated with light, the electrons in that band 

become excited, allowing electrons to flow across 

the energy gap and to the conduction band, 

thereby lowering resistance and allowing more current to flow. Manufacturing of these variable 

resistors vary in voltage, some reaching a few MOhms in complete darkness while others.  

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

120 

 

With the simple hardware out of the way comes the also bone simple software. There are a few 

differences as shown in the code section that will confuse many Arduino enthusiasts as some 

low-level coding instead of the usual high-level techniques were introduced to control the 

ATtiny85. This involves directly manipulating ports instead of using the in-built libraries and 

functions that hide the complexity of low-level coding. Uploading code to the ATtiny85 is the 

same as uploading code to an ATmega328P. 

 

 

 
 

Here pictured above are detailed diagrams of the ATtiny85 with its GPIO pins and port names. 

These port names are crucial to manipulating the desired pins in the Arduino IDE as each pin is 

assigned a port name. On the ATtiny85, there is only one port type which is defined by the letter 

B proceeded by the letter P for port. Examples of manipulating these pins using port names can 

be viewed in the commented code used for this project located in the code section.  

 

Along with pins and ports come the timers in the ATtiny85 which include two 8-bit timers called 

timer0 and timer1. Since these are 8-bit timers, the popular Servo library cannot be used as it 

requires a 16-bit timer to control PWM on the pins. Therefore, a library was not used and 

instead, direct port and timer manipulation was implemented to create a PWM signal. Please note 

that the information provides is a brief summary and may be incorrect as port and timer 

manipulation are new and advanced concepts. More information can be found in the references 

section. 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

121 

 

The timer on the ATtiny85 that is being used is timer0 controlled by accessing certain registers. 

It is setup in normal mode through the TCCROA register and then the bits WGM0, WGM01 and 

WGM02 of the same register are set to a binary value of 010 respectfully in order to set the timer 

in CTC mode. This mode counts up in equal time intervals in a timer register called TCNT0 from 

0 to a pre-set value stored in an 8-bit timer register called OCR0A, therefore a max pre-set value 

of 255 is allowed. When the count in the TCNT0 register matches the pre-set value, it sets a bit 

called OCF0A high in the TIFR flag register. Monitoring the bit in the register allows one to see 

how much time has passed, acting as a delay or millis function, if one sets the time interval in 

between increments of the TCNT0. These time intervals between increments are set through 

prescaled values of the original microcontroller speed of the ATtiny85. These prescaler values 

divide the speed, which is 8 MHz as the ATtiny85 can only support up to 10 MHz, by certain 

powers of two, allowing for longer delay times. This combined with the pre-set bits in the 

OCR0A register allow for measuring time with decent accuracy. 

 

In this project, a microsecond timer similar to the delayMicroseconds function is created by 

setting the time increment is to 8 MHz by applying no prescalers through setting the TCCR0B to 

a binary value of 0. This means that it takes 8 increments of the TCNT0 register for one 

microsecond to pass, therefore, by setting the OCR0A register to 8, the OCF0A bit goes high in 

the TFIR flag register every microsecond. Thereby, through monitoring this bit, a PWM signal 

can be generated to control the servo by making a while loop, akin to a delay function, that exits 

once a certain count of loops that are each one microsecond long have passed. To fully 

understand the code, take a look at the commented code section below. 

 

Media 

  

The ATtiny85 sits on top of the device The very messy previous version using four 

LDR’s for omnidirectional movement 

 

YouTube video link: https://youtu.be/K975ZXLuv1w  

 

https://youtu.be/K975ZXLuv1w


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

122 

 

Code 

 
  

// PROJECT  : The Electronic Sunflower 

// PURPOSE  : Using mechanical motors to create a project 

// COURSE   : ICS3U 

// AUTHOR   : Xander Chin 

// DATE     : May 7, 2021 

// MCU      : ATtiny85 

// STATUS   : Working 

// REFERENCE: 

 

uint8_t pos = 0; 

 

void setup() { 

  DDRB |= (1 << PB0) | (1 << PB1);  // or B11;, set PB0 and PB1 to output 

  TCCR0A = 0x00;          //set to normal mode of timer0 

  TCCR0B = 0x00;          // 

  TCCR0B |= B001;         //or (1 << CS00); toggle bit CS00 on, prescaling with 1 (divides 

clock MHz by 1) 

  TCCR0A |= (1 << WGM01); //toggle mode and compare match  mode 

  OCR0A = 7;//compare value TCNT0. Should be 8 (8 MHz * 8 = 1 microsecond). Errors of time = 7 

  TCNT0 = 0;          //increments up by one to value in OCR0A every clock MHz/prescaler value 

} 

 

void loop() { 

  if(analogRead(A2) < 450) 

    pos++;  

    PORTB &= ~(1 << PB1);       //indicator LED off 

  else if(analogRead(A2) > 550) 

    pos--; 

    PORTB &= ~(1 << PB1);       //indicator LED off 

  else 

    PORTB |= (1 << PB1);        //indicator LED on 

  

  pos = constrain(pos, 1, 180); 

  servoWrite(pos); 

} 

 

void servoWrite(uint8_t pos) { 

  uint16_t pulse = (pos << 3) + (pos << 1) + 500;   //converts into microsecond pulses 

  PORTB |= (1 << PB0);                              //binary 1 

  timer(pulse);                                     //sets the position of servo (PWM) 

  PORTB &= ~(1 << PB0);                             //binary 1 

  timer(50000);                                     //50 milliseconds (for 50 Hz motors) 

} 

 

void timer(uint32_t microSeconds) {       //similar to delayMicroseconds() 

  uint32_t i = 0;                          

  while (i <= microSeconds >> 1) {        //should not be >> 1; again errors in timing 

    while ((TIFR & (1 << OCF0A) ) == 0);  //waiting to OCF0A flag bit high 

    TIFR |= (1 << OCF0A);                 //toggling OCF0A 

    i++;                                  //each loop is approx one microsecond                

  } 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

123 

 

Reflection 

I saw this DER submission as an easier one where I tried to get back into the routine of 

submitting one after a long break of doing so since the medium ISP submission. I made my 

project simple due to a couple of reasons. One, I myself am not too interested at the moment in 

mechanics and motors as I do not have advanced 3D printing design skills that enhance and are 

almost required for any interesting mechanical project. Two, I was quite busy over the past week 

as summative after summative kept pouring in from other classes and currently, my main priority 

is getting my long ISP working and stable. That is to say though that I did have to experiment 

around and try quite a bit. At first I tried to implement a full range of motion for the electronic 

sunflower which proved to be very messy from the amount of wires and sticky tack present. 

When resorting to a one dimensional range of motion, I decided to try and make the project work 

with an ATtiny85 which proved a lot of work as their timers do not support the popular servo 

library and many others I tried using. So I decided to try and control the servos using low-level 

coding which I found to be frustrating but eventually I began to understand how the port and 

timer registers worked in the ATtiny85 which will definitely prove useful in other projects.   

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

124 

 

Project 2.8 (ISP – Long): The IR Nixie Gecko 

 
 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

125 

 

 
 

 
 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

126 

 

 

Base Clock Parts Table 

Quantity Description 

1 Base clock PCB 

1 ATmega328P 

1 5V female USB micro 

1 5V DC jack 

5 SPDT switches 

5 Momentary PBNO 

1 3mm red LED 

1 5mm yellow LED 

1 3mm green LED 

2 0.1 F capacitor 

2 10 k fixed resistor 

1 100 k fixed resistor 

1 1 M fixed resistor 

2 4.7 k fixed resistor 

4 11.7 k ½ W fixed resistor 

5 1 k fixed resistor 

1 DS1307 PCB + parts 

5 PS2535 high voltage optocouplers 

1 595 shift register 

1 K155ID1 

1 Piezo buzzer 

1 Sharp GP1UX511QS sensor 

1 DHT11 sensor 

* Male headers 

* Female headers 

 

Digit Display Parts Table 

Quantity Description 

1 Digit Display PCB 

4 IN-12A nixie tubes 

2 Nixie bulbs 

1 2D custom acrylic board 

* Male headers 

* M3 Standoffs + screws + nuts 

 

 

 

 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

127 

 

Boost Converters Parts Table 

Quantity Description 

1 MAX1771 boost converter PCB 

2 MAX1771 IC 

1 230 uH inductor 

1 EPG-10 1A diode 

1 IRF740 MOSFET 

1 100 uF 25V capacitor 

1 10 uF 25V capacitor 

2 0.1 uF capacitor 

1 4.7 uF 400V capacitor 

1 0.1 uF 250V capacitor 

1 680 pF 250V capacitor  

1 11.7 k fixed resistor 

1 1 M fixed resistor 

1 330 k fixed resistor 

1 HV Taylor 1364 breakout PCB 

1 45 k fixed resistor 

 

IR remote 

Quantity Description 

1 Arduino NANO 

1 Full sized breadboard 

1 3mm Infrared LED 

1 680  fixed resistor 

5 Momentary PBNO 

1 DAC R2R ladder 

5 Pulldown resistors 

 

Purpose 

The purpose of this project was to explore our interests in engineering by creating a project that 

encompasses the three branches: hardware, software, and design. For my project I decided to 

create a four-digit nixie clock that can be controlled through infrared as I am a big fan of the 

warm glow that illuminates their digits. The circuit and design will be similar to the ACES 2014-

2015 Gecko clock.  

 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

128 

 

Theory 

The IR nixie gecko preforms exactly like the original Gecko in that it shows the time, date, year 

and temperature. It also looks like the gecko which involves designing a 2D acrylic plate and 

using four nixie tubes to replicate the four digits of the 7 segment display. A 5V USB cable 

powers the clock just like the gecko and a real time clock (RTC) module as well as a temperature 

sensor will record data of the time. As an added challenge and better accessibility, an IR remote 

sensor like the one used in the Wireless IR project will receive commands from a remote to 

change the clock functions. 

 

Essentially, the circuit surrounds the ATmega328P microcontroller that controls all the important 

components. These components include an RTC, a temperature sensor, an IR receiver and the 

four nixie tubes that are all powered through USB inserted into a micro USB female jack. In 

addition, all parts are through hole so that anyone with a soldering iron can easily put this clock 

together. This circuit setup is similar the Gecko but when delving into the specifics, there are a 

few key differences present in my clock. Firstly, a high voltage of up to 170 VDC is needed to 

power the nixie tubes. Secondly, to control the digits that are on, the individual cathodes on each 

nixie tube need to be connected to ground to illuminate different numbers so I2C communication 

used by the seven segment display on the gecko is not an option. Otherwise, much of it is the 

same. 

 

References 

https://spectrum.ieee.org/tech-history/dawn-of-electronics/the-nixie-tube-story-the-neon-display-

tech-that-engineers-cant-quit 

https://www.youtube.com/watch?v=vmNpsofY4-U 

https://desmith.net/NMdS/Electronics/NixiePSU.html 

https://datasheets.maximintegrated.com/en/ds/MAX1771.pdf 

https://desmith.net/NMdS/Electronics/NixiePSU.html 

https://electronics.stackexchange.com/questions/331220/anode-driver-for-nixie-clock 

https://www.jameco.com/Jameco/workshop/Howitworks/what-is-an-optocoupler-and-how-it-

works.html 

https://www.reddit.com/r/AskElectronics/comments/4awg9d/nixie_tube_display_ghosting_issue/ 

https://datasheets.maximintegrated.com/en/ds/DS1307.pdf 

https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-

1143054.pdf 

https://www.hackster.io/mrelia100/particle-photon-nixie-clock-c8389b 

 

 

  

https://spectrum.ieee.org/tech-history/dawn-of-electronics/the-nixie-tube-story-the-neon-display-tech-that-engineers-cant-quit
https://spectrum.ieee.org/tech-history/dawn-of-electronics/the-nixie-tube-story-the-neon-display-tech-that-engineers-cant-quit
https://www.youtube.com/watch?v=vmNpsofY4-U
https://desmith.net/NMdS/Electronics/NixiePSU.html
https://datasheets.maximintegrated.com/en/ds/MAX1771.pdf
https://desmith.net/NMdS/Electronics/NixiePSU.html
https://electronics.stackexchange.com/questions/331220/anode-driver-for-nixie-clock
https://www.jameco.com/Jameco/workshop/Howitworks/what-is-an-optocoupler-and-how-it-works.html
https://www.jameco.com/Jameco/workshop/Howitworks/what-is-an-optocoupler-and-how-it-works.html
https://www.reddit.com/r/AskElectronics/comments/4awg9d/nixie_tube_display_ghosting_issue/
https://datasheets.maximintegrated.com/en/ds/DS1307.pdf
https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.hackster.io/mrelia100/particle-photon-nixie-clock-c8389b


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

129 

 

Procedure 

The main feature of the project are the nixie tubes. 

They were invented in the 1920’s but only gained 

traction throughout the mid 1900’s. During this 

period,  displaying numbers were especially 

important at that time because computers were 

starting to come to life so scientists and engineers 

needed a way to display output signals. So 

thereafter, these tubes started appearing in many 

devices and instances such as nuclear power 

plants, Wall Street stock prices, and even played a 

role in displaying data for NASA’s moon landing. 

This technology started to die off in the late 

1900’s as LED’s took over many displays as they 

were cheaper to manufacture and consumed less 

power and in the 1990’s the last nixie tubes were 

produced by the Soviet Union. However, nixie tubes have made a comeback and small scale 

companies have started manufacturing again because of the demand from hobbyists and fans of 

retro technology. For now, most nixie tubes that people buy come from the unused stocks in 

Russia particularly from the IN series. Below is a picture of the different IN tubes with the IN-12 

and IN-14 nixies being the cheapest and most popular.  

 

Nixie tubes work through a phenomenon known 

as gas discharge. This is when electrically 

charged particles like electrons move through a 

gas at high speeds. These particles collide with 

gas molecules, ionizing them and elevating them 

to a higher energy level which. Excess energy is 

emitted as photons or light which is how nixie 

tubes display their digits, and the color of the light 

is dependent on the type of gas used. Most nixie 

tubes contain mainly neon which gives it their 

reddish-orange glow. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

130 

 

To produce a digit glow, electrons are passed 

through a cathode wire shaped in the form of a 

character to ionize the gas around it and 

illuminate it. In the most common nixie tubes, the 

metal wires are shaped in the numbers 0 to 9 and 

are stacked on top of each other. In the case of 

most of the IN series, a common anode is used 

and different cathodes control which digit passes 

electrons through and lights up. A problem exists 

called cathode poisoning where one single digit is 

left on for too long; when this happens, a buildup 

of material is deposited onto adjacent digits so 

when they next light up, some light is blocked and 

can dim digits. This is most notable in the picture 

to the right. Luckily, there is a way solve this 

issue which is by cycling through all the digits 

once in a while to keep them active not only 

preventing cathode poisoning but adding flair as 

well.  

 

To ionize the gas properly, a nixie tube need much more than five, nine, or twelve volts. In fact, 

the first product that used gas discharge dubbed Geissler tubes named after the inventor Heinrich 

Geissler, used a few thousand volts to ionize the gas! His invention eventually lead up to the 

nixie tube which now only requires 170 volts to ignite which is still very high and potentially 

lethal. However, nixie tubes only need a small amount of current; around 2.5 mA so a current 

limiting resistor must always be added to not damage or shorten the lifetime of the nixie. Now to 

actually achieve such voltages, there are a few ways such as using transformers or boost 

converters also known as DC-DC step up converters which step up the common low DC voltages 

to higher numbers. In this project, a boost converter was built and used. 

 

Boost converters work on the premise of exchanging low voltage and high current for high 

voltage and low current. So, no extra energy is being created as the wattage would equate to 

about the same, through this is always not the case because of power loss through heat and other 

factors. Therefore, all boost converters have an efficiency rating. Those with an efficiently rating 

of over 85% are considered efficient and only loose under 15% of input power to heat. The 

circuit shown below is the most basic and essential form of a boost converter. 

 

 

 

 

 

 

 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

131 

 

 
 

Here a new part is introduced, which is an 

inductor. Inductors are simply wires wrapped 

around to form a coil with an optional ferric 

material inside. This part works on the fact that 

when energy is passed through a wire, a small 

magnetic field is generated. By coiling up wires, 

this magnetic field is magnified and when voltage 

changes in the inductor, the built up magnetic 

field collapses and induces current in the coil, 

creating a large voltage spike which is how the 

voltage “steps up”. In the circuit above, the MOSFET, a type of transistor, switches on and off 

through a PWM signal. When the signal is high, current runs through the inductor and its 

magnetic field grows to its maximum strength which is its saturation state. Here, current slows 

down as the inductor reaches saturation. Once the signal goes low, the MOSFET turns off, 

cutting off the previous route. The magnetic field collapses inducing extra current into the 

capacitor which adds on voltage. The diode then prevents the capacitor from discharging 

immediately. With this, voltage can be controlled through the PWM frequency by controlling 

how much output voltage there is. However, if the current in the load changes, the voltage will 

not remain stable if the PWM frequency is kept the same. 

 

To solve this issue, people made and use dedicated ICs to maintaining voltage in a boost 

converter. Once such IC is called the MAX1771 made by the chip manufacturer Maximum 

Integrated that was used in the boost converter made using through hole parts. The schematic for 

this is shown below that echoes the basic boost converter circuit with a few extra parts such as 

capacitors required for voltage stability as well as the chip itself. 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

132 

 

 

 
 

The MAX1771 is an eight pin IC that produces 

a PWM signal on a MOSFET to keep a pre-set 

voltage constant with changing current loads by 

taking feedback on the feedback (FB) pin. The 

voltage can be set to 12V by grounding the FB 

pin and can also be set to any output voltage is 

by connecting two external resistors in a voltage 

divider formation. The resistance of each 

resistor tells the MAX1771 what output voltage 

to produce using the formula below where Vref 

is 1.5: 

 

𝑅2 = (𝑅1) (
𝑉𝑜𝑢𝑡

𝑉𝑟𝑒𝑓
− 1)  

 

To get a voltage of around 170, a 1 M and 330 k resistor was combined for R1 and a 11.7k 

resistor was set as R2. When plugging these values in, the result is a voltage of 175. The other 

pins play roles in power, outputting the PWM signal and enabling the chip. However, the CS pin 

acts as an output current control that requires a current-sense resistor of below 0.1. Higher 

resistance equates to less current and through testing I found that there was a drop in voltage too. 

These current-sense must be able to handle high wattage as large amounts of current and voltage 

a passing through them. This makes quite large in THT packages, though I managed to find some 

that were quite small but were only available in SMD packages. Therefore, I skipped out on the 

resistor which didn’t seem to have much of an effect on performance, though if I make a surface 

mount version of a power supply as most commercial ones do, I will include that resistor. 

 

Since boost converter circuits have a power efficiency rating of how little power is lost to heat 

when boosting voltage, the component selection for the MAX1771 matters greatly. If component 

selection is poor, more power will be lost. For example if the MOSFET or diode cannot switch 

fast enough, there will be some voltage loss. If the inductor is not large enough or has too much 

resistance, the boost converter will have trouble maintaining the specified voltage. Obviously, 

anything that has high voltage passing through should be rated for a high power rating so many 

of the components can handle up to 400VDC  Likewise, circuit configuration plays a crucial role 

as well in efficiency. Essentially, everything should be connected as short as possible to prevent 

any small amount of resistance that can affect the IC and all ground signals should be connected 

together in a star ground configuration to reduce signal noise. 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

133 

 

After breadboarding the MAX1771 step-up 

converter, which worked but had some trouble 

maintaining voltage (it would drop from 170V to 

150V), a PCB was designed. Unlike regular 

PCBs, design of traces and component placement 

was crucial to how effective the boost converter 

works. Wider traces and curved corners where 

implemented to reduce resistance and enable 

better current flow and high current traces were 

kept away from signal traces to prevent any noise. 

Also, a ground plane was added to effectively 

create a star ground configuration. Component 

placement included placing the inductor off the ground plane and off to the side so as to not 

induce any unwanted current on communication traces and parts and the gate of the MOSFET 

was placed very close to the EXT pin of the MAX1771 where the PWM signal is outputted.  

 

When powering a nixie tube with it, the circuit on the PCB immediately shot up to 170 volts and 

maintained its voltage when powering the nixie tube. This was a good sign as it was suitable for 

powering the clock. To explore efficiency when powering the nixies, the input and output current 

and voltage was measured and put into the following formula: 

 
𝑉𝑜𝑢𝑡 • 𝐴𝑜𝑢𝑡

𝑉𝑖𝑛 • 𝐴𝑖𝑛
• 100 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 %  

 

 
170𝑉 • 2.03𝑚𝐴

5𝑉 • 80𝑚𝐴
• 100 = 86.275% 

 

Overall, when using the boost converter in my 

clock, it works well and is viable to use. Although 

it still has a bit of trouble maintaining voltage and 

current, as shown when some of the digits fade a 

bit when they flash in edit mode, it gets the job 

done. To improve on it, I would create one that is 

not entirely through hole soldering and instead 

integrate some SMD components to reduce PCB 

space and trace widths and therefore increase 

performance, similar to the Taylor 1364 nixie power supply pictured below and that I bought just 

in case the one I built did not function properly. Compared to mine, it is much smaller and also 

maintains voltage perfectly.  

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

134 

 

Now that the nixie tubes have power, the different 

digits need to be controlled to show time, date, 

temperature, and other important information. To 

control which digit is on, the digits cathode has to 

be pulled to ground as each nixie tube has a 

common anode and separate cathodes. Luckily 

since these tubes were widely used, a dedicated 

IC was made to sink high voltages from the nixie 

tubes. This IC is the Russian made K155ID1. It 

takes in a four-bit binary input and allows current 

to pass through the equivalent decimal number 

assigned to a pin. So by connecting the digit 

cathodes of the nixie tube to the respective digit 

grounds on the IC, different digits can be 

illuminated.  

 

Since one K155ID1 controls one nixie tube, four 

is needed to make a four digit clock. However, 

these chips only come in a DIP package which 

take up a large amount of space. Because only 

through hole parts were allows to make soldering easy, POV was implemented. This means that 

only one K155ID1 was used as only one digit will be on at a given time. Also, only one anode of 

a tube must be on as well; if other anodes of different tubes are on, they would all display the 

same digits so each tubes anode must have the ability to turn on and off. By doing this, the first 

tube would turn on and the K155ID1 would sink the digit cathode to illuminate it. Then the first 

anode would turn off and the next tube anode repeats this cycle.  

 

To turn off and on high voltage anodes, an high 

power NPN transistor must be used where it can 

be controlled by a microcontroller, but the catch 

is that one transistor for each anode is not 

enough. If only one is used, it will switch on but 

the voltage at the emitter will be smaller than the 

voltage applied to the base because it is in an 

“emitter follower” configuration. Therefore, if 

controlling the transistor at the base with a 

microcontroller, the max output voltage 

produced will be less than 5V no matter the 

voltage at the collector, too little to turn on a 

nixie. To solve this, a configuration like the one 

on the right involving an NPN and PNP is used 

which prevents an emitter follower 

configuration. 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

135 

 

When employing this configuration, the anode 

could not be switched off. This led me to believe 

that the leakage current of the transistors I bought 

was too great and was keeping the PNP transistor 

constantly saturated. These transistors were 

different from the recommended MPSA42 NPN 

and MPSA92 PNP as I could not find any through 

hole version in stock. As a workaround, I 

discovered optocouplers, which are similar to 

transistors. They simply consist of an LED and a 

photosensor inside a DIP package with four pins; two for the LED and two for the photoresistor. 

When the LED turns on by connecting power and ground to the respective, the photoresistor 

conducts and allow current to pass through both output pins, connecting the circuit. Luckily, 

some high voltage optocouplers were available so I setup four of them for each digit. This setup 

was also a lot neater and worked very well compared to the transistor layout.  

 

To recap on controlling the clock, four inputs need to control each digit cathode and an extra four 

inputs are required to control the optocouplers for each digit. This equates to eight total inputs 

which is the perfect amount to be driven by a 595 shift register; the four low bytes control the 

cathodes through the K155ID1 and the four high bytes control the anodes through the 

optocouplers. This saves I/O pins for the ATmega328P as only three need to control the shift 

register. This presents a small problem of speed as the software shift out function can require 

some time especially since it needs to be called every millisecond or so to enable the POV effect. 

But, using dedicated SPI pins on the ATmega328P, a strategy used in the Wireless project, the 

result was a much faster shift out time. 

 

In the first persistence of vision project, the 

strategy of shifting out bits to form 

alphanumerical patterns applies to the nixie clock 

as well. Unlike the shift registers in POV project, 

the shift register on the clock must be given 

specific instructions to prevent a common issue 

called ghosting. This is a common issue in 

multiplexing nixie tubes when an illuminated 

digit on one tube is dimly lit in the other tubes. To solve this, a nixie tubes anode must be turned 

off before proceeding to turn the next one on. 

 

Now that the tubes can be powered and individual digits can be illuminated, all that’s left is 

getting data of the time and temperature. For time, another dedicated IC called the DS1307RTC 

records time with the help of some other external components and for the temperature, a DHT11 

sensor records not only temperature but humidity as well.   

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

136 

 

Let’s start with the DS1307. This eight pin IC 

sends data back and forth through I2C and keeps 

track of time even when the clock is not powered 

through the help of a 3V lithium coin battery. For 

better accuracy, an optional 32.768 kHz crystal 

can be attached to the X1 and X2 pins. Luckily, 

my teacher C. D’Arcy designed a breakout board 

for the DS1307 for easy setup so that was used. 

This breakout board includes some supporting 

resistors and capacitors to facilitate smoother 

power and data connections 

 

 

 

 

 

 

 

 

 

 

The DHT11 is a basic weather sensor containing a 

temperature and humidity sensor inside calibrated 

to measure between 20-90% humidity and 0-50 

°C with a medium amount of accuracy. To 

communicate with an MCU, the device uses serial 

interface which involves one wire and two-way 

travel where the MCU sends a stream of bits to 

the DHT11 to start up and the DHT11 sends 

another stream of bits to the MCU reporting the 

temperature and humidity. When recording data, 

it takes approximately one second to complete. 

More information can be found on the datasheet 

in the references. 

 

For better controllability, a sharp GP1UX511QS sensor takes in IR signals from a custom 

remote. This remote consists of several buttons that all connect to one analog pin through an 8-

bit digital to analog (DAC) R2R ladder. This is similar to a resistor array except that the resistors 

are arranged in a different configuration shown below. It converts a digital binary input from 

highs or lows on the input pins and converts them into an analog voltage. 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

137 

 

Here, power is connected to the power pin and 

buttons in a pull-up resistor configuration connect 

to the input pins of the R2R ladder. The output pin 

emits a varying voltage depending on which 

button is pressed. This output voltage can then be 

calculated as a binary percentage of the input 

voltage. For example, if 5 volts is placed on the 

input pin and the most significant pin of the R2R 

ladder receives a high from pressing the button, 

the output voltage will be 5 over 128, the decimal value of the most significant bit, and 255, the 

binary to decimal value when all 8-bits are high. This voltage will then be around 2.5V. Since the 

Arduino NANO, the microcontroller that is used to read the R2R ladder, has a 10-bit analog to 

digital (ADC) converter, 5 volts will equate to 1023 and 2.5 volts will either be 512 or 511. By 

using an if else ladder of ADC values from reading the output, the press of different buttons can 

be sensed only using one pin and different IR signals can be sent out, which manipulates the 

clock in different ways. This is achieved through connecting an IR LED to a PWM pin and a 

current limiting resistor. The IR LED sends out a signal of a certain remote protocol and it is 

read by the GP1UX511QS on the clock. 

 

These are all the parts and implementations that are included for the clock. To recap, a DHT 

temperature sensor and an RTC breakout board send data to the ATmega328P. The MCU then 

controls a 595 shift register through SPI which then controls the K155ID1 and four optocouplers 

to show the collected data with persistence of vision. The optocouplers help turn on and off each 

anode of the tubes and the K155ID1 sinks current of a specific digit cathode on the tubes. The 

tubes receive high voltage power through a boost converter. Buttons and switches connected to 

the spare pins of the ATmega328 act as inputs for someone to control the clock.  

 

Also, a piezo buzzer is attached to act as an alarm. 

It works by using a piezo crystal that changes 

shape when a voltage is applied which then 

pushes against a diaphragm in the buzzer and 

produces a pressure wave that is picked up as 

sound. In case the clock wants to be changed from 

far away, a custom remote with an IR LED with 

buttons and a R2R ladder to control what signal is 

sent controls the clock. These IR signals are 

picked up the sharp GP1UX511QS attached to a 

pin on the MCU. As an added feature, two small 

neon bulbs that also require 170 volts were added to form the colon that separates the hours from 

the minutes. A 100 k resistor was attached to them to lower brightness and to prevent all the 

maximum current draw of the power supply from going through the bulbs, dimming the 

illuminated digits. 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

138 

 

Once prototyped, PCB designs were fabricated for the clock and power supply. Unfortunately, 

there was not enough time to produce a PCB for the remote so it remained on the breadboard. 

Unlike regular PCBs, these were dealing with high voltage and had to have certain requirements 

to prevent degradation and to protect the whole circuit. Firstly, PCB traces that handled power 

were increased in thickness for the amount of current consumed by the power supply and more 

importantly, clearance between pads, vias and traces was extended to prevent any arcing and 

short circuiting. As an extra precaution, high voltage and ground traces were kept far away from 

each other and most corners were rounded for better current flow. Secondly, parts were placed so 

that the distance between traces were minimal and the overlap of high voltage to signal traces 

were minimized to prevent any induced current in the data lines.  

 

Once sorting through the precautions, looks and ergonomics came into play. I decided that the 

clock should have a display PCB where the nixie tubes were soldered on and it would go on top 

of the base PCB where most of the parts would reside. This was accomplished through male and 

female header pins so that the top could be easily taken off. The top contained the anodes of the 

nixie tubes and colon bulbs and the bottom bunched the cathodes to the K155ID1on the base 

PCB. Speaking of the base PCB, buttons were placed on the side for better accessibility and 

switches were mounted on the back. The boost converter PCB would be separate from the base 

PCB just in case something went wrong with the boost converter. To top it all off, a 2D acrylic 

plate with holes for M3 screws and standoffs was made and attached in front of the digit PCB. 

Essentially, you can imagine the clock like a good looking sandwich of PCBs. 

 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

139 

 

 
 

 
 

After soldering everything up, all worked well. There were of course a few issues with clock. 

Firstly, the reset button for the ATmega328 did not work as I reversed the ground and power 

traces. This was fixed by cutting the respective traces and rerouting them using external wires. 

Secondly, the cathode inputs of the display to the base PCB were mixed up so binary input of the 

K155ID1 did not match the illumiated decimal digit equivalent. Luckily, this was an easy fix by 

remapping the mixed up digits with the correct ones in the code. Some other minor issues 

included the difficulty of accessing the power switches and buttons, misspelling optocoupler as 

“octocoupler” on the silkscreening, and not being able to fit the RTC breakout board on the front 

so it was simply moved to the back. For the boost converter, I planned to use male pins to attach 

to the base but they were too short and were blocked by the components so a wire was used 

instead. To fix this in V2, the components will be soldered on the other side. Other than that, 

everything works perfectly. To view a demonstration and to learn aobut the different functions it 

has, take a look at the YouTube link in the media section. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

140 

 

Media 

  

The ACES Gecko The IR Nixie Gecko 

 
 

Cathode poisoning on a nixie tube Cycling through the digits to prevent cathode 

poisoning 

 

YouTube video link: https://youtu.be/nEOyhyJHx2M  

 

https://youtu.be/nEOyhyJHx2M


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

141 

 

Code 

Nixie Clock 

 
 

// PROJECT  : The IR Nixie Gecko 

// PURPOSE  : Long ISP 

// COURSE   : ICS3U 

// AUTHOR   : Xander Chin 

// DATE     : May 29, 2021 

// MCU      : 328P 

// STATUS   : Working. Could use some improvements (very messy) 

// REFERENCE: 

 

#include <EEPROM.h>   //was going to be used for alarm 

 

#include <IRremote.h> 

int RECV_PIN = 8; 

IRrecv irrecv(RECV_PIN); 

decode_results results; 

 

#include <SPI.h> 

#define OENABLE 9 

 

#include <Wire.h> 

#include <TimeLib.h> 

#include <DS1307RTC.h> 

 

#include <NewTone.h> 

 

#include <DHT.h> 

#define DHTpin 9 

DHT dht(DHTpin, DHT11); 

 

uint32_t code; 

uint32_t lastSwitch; 

#define pov 5000 

bool state = true; 

uint8_t digits[4] = {1, 2, 3, 4}; 

 

//for mixed up digits 

uint8_t trueNumbers[10] = {9, 2, 1, 4, 3, 6, 5, 8, 7, 0}; 

 

uint8_t output = 0; 

uint8_t x = 0;  

 

uint8_t hours; 

uint8_t minutes; 

uint8_t months; 

uint8_t days; 

uint16_t years; 

//uint8_t timerMinutes; 

//uint16_t timerSeconds; 

//uint16_t stopwatch = 0000;    //unimplemented 

 

uint8_t alarmHour = 7; 

uint8_t alarmMinute = 0; 

 

bool edit; 

bool digitOn; 

bool alarm; 

bool alarmOn; 

bool snooze; 

uint32_t lastSnooze; 

bool timeMode; 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

142 

 

 
 

 

uint8_t mode = 0; 

uint8_t editMode = 0; 

uint32_t lastCycle; 

#define cycle 15 

 

uint32_t lastPress; 

#define debounce 250 

 

uint32_t lastFlash; 

uint32_t lastOn; 

 

bool tempMode; 

uint16_t t; 

uint8_t h; 

 

uint32_t lastTimeCycle; 

uint8_t flash; 

 

tmElements_t tm; 

 

#define snoozeDuration 10000 

 

void setup() { 

  irrecv.enableIRIn(); // Start the receiver 

  pinMode(2, OUTPUT); 

  pinMode(3, INPUT_PULLUP); 

  pinMode(4, INPUT_PULLUP); 

  pinMode(5, OUTPUT); 

  pinMode(6, INPUT_PULLUP);  

  pinMode(7, OUTPUT); 

  pinMode(12, INPUT_PULLUP); 

     

  dht.begin(); 

  t = dht.readTemperature()*100; 

  h = dht.readHumidity(); 

} 

 

void loop() { 

  alarm = digitalRead(A2) ? true : false; 

  timeMode = digitalRead(A3) ? true : false; 

  if(!alarm) alarmOn = false; 

  if(alarm && alarmHour == tm.Hour && alarmMinute == tm.Minute && tm.Second == 0) { 

    alarmOn = true; 

    snooze = false; 

  } 

  if(alarm && alarmOn) { 

    NewTone(5, 330); 

    if(!digitalRead(12)) { 

      alarmOn = false; 

      snooze = true; 

    }     

  } else noNewTone(); 

     

  if(alarm && snooze) { 

    if(millis() - lastSnooze > snoozeDuration) { 

      alarmOn = true; 

      snooze = false; 

      lastSnooze = millis(); 

    } 

  } 

 

  //refresh variables 

  hours = tm.Hour; 

  minutes = tm.Minute; 

  months = tm.Month; 

  days = tm.Day; 

  years = tm.Year;  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

143 

 

 

 

 
 

   

  edit = digitalRead(A1) ? true : false;  

  if(edit) { 

    switch(mode) { 

      case 0: editTime(); break; 

      case 1: editDate(); break; 

      case 2: editYear(); break; 

      case 3: editAlarm(); break; 

      //case 4: editTimer(); break;   //unimplemented 

      default: break;     

    } 

  } else { 

    flash = B1100; 

    switch(mode) { 

      case 0: showTime(); break; 

      case 1: showDate(); break; 

      case 2: showYear(); break; 

      case 3: showTemp(); break; 

      //case 4: showTimer(); break;   //unimplemented 

      default: break; 

    } 

  } 

 

  //IR codes 

  if(irrecv.decode(&results)) { 

    code = results.value; 

    irrecv.resume(); 

  } 

   

  if(code == 100) { 

    mode++; 

    code = 0; 

    scramble(); 

  } 

   

  if(code == 200) { 

    mode--; 

    code = 0; 

    scramble(); 

  } 

   

  if(!edit) { 

    if(!digitalRead(6) && millis() - lastPress > debounce) {        

      scramble(); 

      mode++; 

      lastPress = millis();   

    } 

  } 

 

  //cycle through digits 

  if(millis() - lastTimeCycle > 60000) { 

    scramble(); 

    lastTimeCycle = millis(); 

  } 

 

  //blink colon bulbs 

  state = tm.Second % 2 ? 1 : 0; 

  digitalWrite(7, state); 

     

  if(!edit) displayNumbers();   //instead flash digits 

 

  //cycles to the first mode after the last 

  mode = mode % 4; 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

144 

 

 

 

 

 

 
 

// 

void displayNumbers() { 

  if(micros() - lastSwitch > pov) { 

    bitWrite(output, 4+x, LOW); 

    hardwareShiftOut(output); 

    x = (x+1) % 4; 

    output = digits[x]; 

    hardwareShiftOut(output); 

    bitWrite(output, 4+(3-x), HIGH); 

    lastSwitch = micros(); 

  }   

  hardwareShiftOut(output); 

} 

 

void digitFlash(uint8_t number) { 

  if(millis() - lastOn > 500) { 

    digitOn = !digitOn; 

    lastOn = millis(); 

  } 

  if(micros() - lastFlash > pov) {    

    bitWrite(output, 4+x, LOW); 

    hardwareShiftOut(output); 

    x = (x+1) % 4; 

    output = digits[x]; 

    hardwareShiftOut(output); 

    if(digitOn) { 

      bitWrite(output, 4+(3-x), HIGH); 

    } else { 

      if(bitRead(number, 3-x)) bitWrite(output, 4+(3-x), HIGH); 

    }     

    lastFlash = micros(); 

  }   

  hardwareShiftOut(output); 

} 

 

void showTime() { 

  if(RTC.read(tm)) { 

    if(timeMode) { 

      if(tm.Hour == 0 || tm.Hour == 12)  

        setDigits(12*100 + tm.Minute); 

      else setDigits((tm.Hour % 12)*100 + tm.Minute); 

    } 

    else setDigits(tm.Hour*100 + tm.Minute); 

  } 

  if(timeMode) { 

    if(tm.Hour > 11) digitalWrite(2, HIGH); 

    else digitalWrite(2, LOW); 

  } else digitalWrite(2, LOW);   

} 

 

void showDate() { 

  if(RTC.read(tm)) { 

    setDigits(tm.Month*100 + tm.Day); 

  } 

} 

 

void showYear() { 

  if(RTC.read(tm)) { 

    setDigits(tmYearToCalendar(tm.Year)); 

  } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

145 

 

 

 

 

 
  

 

void showTemp() { 

  if(RTC.read(tm));   //keeps updating the time 

  if(millis() - lastCycle > 3000) { 

    tempMode = !tempMode; 

    if(!tempMode) scramble(); 

    t = dht.readTemperature()*100; 

    h = dht.readHumidity(); 

    lastCycle = millis(); 

  } 

  tempMode ? setDigits(h) : setDigits(t); 

} 

 

void showTimer() { 

  //unimplemented 

} 

 

void showAlarm() { 

  setDigits(alarmHour*100 + alarmMinute);  

} 

 

void editTime() { 

  //configure time 

  if(!digitalRead(3) && millis() - lastPress > debounce) { 

    if(flash == B1100) { 

      hours = (hours + 1) % 24; 

      tm.Hour = hours; 

      RTC.write(tm);  

    } else if(flash == B0011) { 

      minutes = (minutes + 1) % 60; 

      tm.Minute = minutes; 

      RTC.write(tm);  

    } 

    lastPress = millis(); 

  } else if(!digitalRead(4) && millis() - lastPress > debounce) { 

    if(flash == B1100) { 

      hours == 0 ? hours = 23 : hours--; 

      tm.Hour = hours; 

      RTC.write(tm);  

    } else if(flash == B0011) { 

      minutes == 0 ? minutes = 59 : minutes--; 

      tm.Minute = minutes; 

      RTC.write(tm);  

    } 

    lastPress = millis(); 

  } 

  showTime(); 

  flashNumbers(); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

146 

 

 

void editDate() { 

  //configure date 

  if(!digitalRead(3) && millis() - lastPress > debounce) { 

    if(flash == B1100) { 

      months = (months + 1) % 13; 

      tm.Month = months; 

      RTC.write(tm);  

    } else if(flash == B0011) { 

      days = (days + 1) % 60; 

      tm.Day = days; 

      RTC.write(tm);  

    } 

    lastPress = millis(); 

  } else if(!digitalRead(4) && millis() - lastPress > debounce) { 

    if(flash == B1100) { 

      months == 0 ? months = 23 : months--; 

      tm.Month = months; 

      RTC.write(tm);  

    } else if(flash == B0011) { 

      days == 0 ? days = 59 : days--; 

      tm.Day = days; 

      RTC.write(tm);  

    } 

    lastPress = millis(); 

  } 

  showDate(); 

  flashNumbers(); 

} 

 

void editYear() { 

  if(!digitalRead(3) && millis() - lastPress > debounce) { 

    years = (years + 1) % 10000; 

    tm.Year = years; 

    RTC.write(tm); 

    lastPress = millis(); 

  } else if(!digitalRead(4) && millis() - lastPress > debounce) { 

    years == 0 ? years = 9999 : years--; 

    tm.Year = years; 

    RTC.write(tm); 

    lastPress = millis(); 

  } 

  showYear(); 

  digitFlash(0); 

  if(!digitalRead(6) && millis() - lastPress > debounce) { 

    mode++; 

  } else if(!digitalRead(12) && millis() - lastPress > debounce) { 

    mode--; 

  } 

} 

 

void editAlarm() { 

  if(!digitalRead(3) && millis() - lastPress > debounce) { 

    if(flash == B1100) { 

      alarmHour = (alarmHour + 1) % 24; 

    } else if(flash == B0011) { 

      alarmMinute = (alarmMinute + 1) % 60; 

    } 

    lastPress = millis(); 

  } else if(!digitalRead(4) && millis() - lastPress > debounce) { 

    if(flash == B1100) { 

      alarmHour == 0 ? alarmHour = 23 : alarmHour--; 

    } else if(flash == B0011) { 

      alarmMinute == 0 ? alarmMinute = 59 : alarmMinute--; 

    } 

    lastPress = millis(); 

  } 

  showAlarm(); 

  flashNumbers(); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

147 

 

 
  

void editTimer() { 

  //not implemented yet 

} 

 

void hardwareShiftOut(uint8_t value) { 

  //Initializes the SPI bus setting SCK, MOSI, and SS to outputs, 

  SPI.begin();                //pulls SCK and MOSI low, and SS high. Default: MSBFIRST 

  SPI.transfer(value);        //invert the output for ease of interpretation 

  digitalWrite(SS, LOW);      //pull Slave Select LOW to identify target device 

  digitalWrite(SS, HIGH);     //release target device 

  SPI.end();                  //disables SPI Bus (leaving pin modes unchanged) 

  digitalWrite(OENABLE, state); 

} 

 

void scramble() {   //iterates through all digits 

  for(uint8_t x = 0; x < 30; x++) { 

    for(uint8_t y = 0; y < 4; y++) { 

      digits[y] = (digits[y] + 1) % 10; 

    } 

    lastCycle = millis(); 

    while(millis() - lastCycle < cycle) { 

      displayNumbers(); 

    } 

  } 

} 

 

void setDigits(uint16_t number) {   //set a 4-digit number to display 

  uint8_t n = 0; 

  for(uint8_t x = 0; x < sizeof(digits); x++) {     

    n = number % 10; 

    number /= 10; 

    digits[x] = trueNumbers[n];  

  } 

} 

 

void flashNumbers() {   //flash/blink specific digits 

  if(!digitalRead(6) && millis() - lastPress > debounce) { 

    flash >>= 2; 

    if(flash == 0) { 

      mode++; 

      flash = B1100; 

    } 

    lastPress = millis(); 

  } else if(!digitalRead(12) && millis() - lastPress > debounce) { 

    flash <<= 2; 

    if(flash > 16) { 

      mode--; 

      flash = B0011; 

    } 

    lastPress = millis(); 

  } 

  digitFlash(flash); 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS3U – Introduction to Computers 

148 

 

IR Remote 

 
 

Reflection 

 

Here, at the end of another long year, I felt like I’ve accomplished so much in every engineering 

domain of hardware, software, design and communication. It has truly been a pleasure even with 

COVID-19 distance learning and I am extremely proud of what I accomplished this year. 

Unfortunately, like my other ISP, this one is late as I spent most of my time debugging and 

completing other assessments from other classes. This also had an effect on the performance of 

the code; I wanted to implement port manipulation techniques or at least clean it up a little but I 

simply ran out of time. But, even though this submission is late, I am still really proud making a 

fully functional clock powered by a DIY power supply that worked with a few tweaks on the 

first version and I plan on using it as a bedside/work clock. I also plan on continuing to add more 

features and improve on it further for it to be on par with commercial ones as I was running low 

on time. Before going to bed, I want to thank former ACE Mariano Elia for providing me the HV 

Taylor 1364 power supply, extra K155ID1s and his tips and tricks that he learned over the years 

while developing his version of a nixie clock.

// PROJECT  : IR remote for IR Nixie Gecko 

// PURPOSE  : IR control 

// COURSE   : ICS3U 

// AUTHOR   : Xander Chin 

// DATE     : May 29, 2021 

// MCU      : 328P 

// STATUS   : Working 

// REFERENCE: 

 

#include <IRremote.h> 

IRsend irsend; 

#define READ A5 

 

void setup() { 

  Serial.begin(9600); 

} 

 

void loop() { 

  uint16_t button = analogRead(READ); 

  Serial.println(button); 

  if(button == 0) { 

    //nothing 

  } else if(button < 100) { 

    irsend.sendSony(100, 12); 

  } else if(button < 200) { 

    irsend.sendSony(200, 12); 

  } else if(button < 300) { 

    //unimplemented 

  } else if(button < 500) { 

    //unimplemented 

  } else if(button < 600) { 

    //unimplemented 

  } 

} 

 

 



 

149 

 



 

150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICS4U 
AVR Optimization



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

151 

 

Project 3.1: PB Machine 

Purpose 

The purpose of this project is to practice surface mount technology (SMT) soldering skills and to 

refresh the procedures of submitting a project by assembling a PB machine and using it to power 

a circuit. 

 

References 

https://youtu.be/d58GzhXKKG8 

 

Procedure 

SMT refers to components that are very small in 

size that allows hobbyists and engineers to fit 

more components into a smaller PCB. This helps 

transition a bulky device to a sleeker more 

compact device such as an iPhone. The PB 

machine, although very simple, prepares oneself 

to solder SMT components.  

 

The PB machine is a handy device used to supply 

power to a breadboard with a DC barrel jack input 

via male header pins. It also includes a small 

surface mount device (SMD) LED and resistor to 

indicate whether power is being supplied. This 

turns the LED on whereas no power or a short 

circuit will turn off the LED which makes it a 

very useful addition. The PB machine has been 

the most extensively used device throughout this course as it was always used in the ICS2O 

section. This time, the SMD LED and resistor did not come presoldered and instead, the task was 

to solder on these components using a variety of SMT soldering techniques. 

 

To solder on the SMD LED, a normal soldering iron was used. The technique for this is to put 

solder on one pad, place the LED on the pads, reheat the solder so that the LED wicks to it, and 

finally solder it to the remaining pad. This technique can also be used for resistors and 

capacitors, however, SMT IC’s are a little harder to do.  

 

https://youtu.be/d58GzhXKKG8


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

152 

 

To solder on the resistor, I opted for a hot air gun 

and soldering paste to get familiar with this 

second technique. First, a small amount of solder 

paste was added to both pads and the resistor was 

placed on the pads. The hot air gun was then set to 

300 °C with a small amount of airflow. To solder 

the resistor, the hot air gun should be above the 

resistor and then slowly decend downward. After 

a while, the solder paste will turn into melted 

solder and the resistor should wick into place on 

the pads. It is important to put a small amount of 

solder paste or else the solder will bridge between 

the pads. This technique is more precise and 

easier to do than manually using a regular 

soldering iron, however, to solder IC’s and 

components with small pads on a PCB, a stencil 

must be used to correctly apply solder paste to the 

small pad footprints. 

 

To practice even more, three capacitors of varying capacitance were added on which helps filter 

out sudden voltage spikes from the power supplied in the PB machine. Two of the capacitors 

were SMD while the third was a normal polarized capacitor where all were soldered between the 

supply and ground rails of the 2  3 male pin header.  

 

 
 

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

153 

 

The circuit that the PB machine powers converts a 

square wave produced by a 555 timer into a  

 sine wave using resistor capacitor pairs. Three of 

these RC pairs are needed to successfully produce 

a decent looking sine wave. The first pair turns 

the square wave into one that shows the charging 

and discharging of a capacitor over time as shown 

in Project 1.2 The Capacitor Visualizer. The 

second RC pair turns that wave into a triangle 

wave and the final RC pair converts it into a sine 

wave. It is also noted that these triangle and sine 

waves show up with a gap which is currently 

unknown why they are there. Since resistors and 

capacitors are fixed in their values, certain pairs 

of them can only handle a range of frequencies. 

For example, a 15 k resistor paired with a 10 F 

capacitor can convert a signal of around 1 Hz. 

This frequency and the RC values were found 

using this formula where f is the frequency, R is 

the resistance in , and C is the capacitance in 

farads:  

 

𝑓 =
1

2 𝑅𝐶
 

 

Also, as the wave is filtered through RC pairs, the amplitude decreases because the capacitor 

does not have enough time to charge all the way to its full voltage and therefore must discharge 

when the square wave is low. So, as the frequency increases the magnitude decreases and vice 

versa. 

 

To capture the waveforms, a handy device was 

used called an oscilloscope. This device graphs 

voltage, current, and other values over time, hence 

forth, it is very useful in debugging and 

understanding what goes on in a circuit. Most 

oscilloscopes are quite expensive and their price 

increases depending on three main factors. First is 

the amount of channels an oscillioscope has; the 

more channels the more expensive it will be. The 

number of channels available means that the oscillopscope can measure up to that number of 

locations. Second is the sample rate which describes how many measurements the scope can take 

in a second, therefore limiting the frequency of a signal that it can measure. The standard sample 

rate values are usually 1 or 2 gigasample per second (GSa/s) which means they can measure 

most MHz signals with good resolution. The third factor is the bandwidth which further limits 

the frequency since when you get close to the bandwidth frequency, the signal output starts to 

become altered. Most good scopes have bandwidths within the MHz range.  

Parts Table 

Quantity Description 

1 PB machine 

1 9V power source 

1 1206 SMT LED 

1 1k 1206 SMT resistor 

1 0.1 F  SMT capacitor 

1 1 F SMT capacitor 

4 10 F capacitor 

1 555 timer IC 

1 5mm red LED 

1 100 F capacitor 

1 10 k potentiometer 

1 100  fixed resistor 

1 2.2 k fixed resistor 

1 470  fixed resistor 

1 330  fixed resistor 

3 10 k fixed resistor 

1 4.7 k fixed resistor 

1 Oscilloscope + probes 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

154 

 

For a basic use of the scope, one must connect a probe to a channel, connect the ground to the 

circuit ground, and finally the acutal probe to a position in the citcuit to take a look at the 

waveforms. Afterward, the waveform must be positioned and shown properly through 

corresponding buttons. More advanced uses include math functions for calculating or predicting 

values of a circuit. 

 

Media 

  

The custom circuit powered by the PB 

machine 

 

The waveform passed through one RC pair 

  

The waveform passed through two RC pairs The waveform passed through three RC pairs 

  

 

YouTube video link: https://youtu.be/GJCeeS7HzAk  

 

 

https://youtu.be/GJCeeS7HzAk


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

155 

 

Reflection 

Even though this project was a simple one, I still felt a little stressed as it is the first project of the 

year. However, it was simple enough to allow me to focus on getting back into the procedure of 

writing, filming, and brushing up my DER for this year as well as having the time to add extra 

capacitors the PB machine. I enjoyed exploring the soldering options for SMT components and 

will defninely be using more of those as their size saves a lot of space on a PCB and an 

enclosure. Also getting to explore the functions of the oscilloscope was fun since they are 

essential to debugging complex circuits in the future. All in all, it’s good to be back and I’m 

really excited to explore and complete other projects that lie ahead. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

156 

 

Project 3.2: CHUMP Code, Clock, Counter 

 
 

Purpose 

The purpose of this project is to lay a foundation for the Cheap Homebrew Understandable 

Minimal Processor (CHUMP) 4-bit computer built on a breadboard by designing its clock and 

program counter functions as well as creating a unique code to run on it. This allows the rest of 

the parts to be added on easily and tested. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

157 

 

Theory 

The CHUMP computer is a simple as possible and easy to understand 5 volt logic 4-bit computer 

created by Dave Feinberg to expose his AP software students to the basic hardware and software 

of a computer. A 4-bit design means that it can only hold 16 line numbers that the CHUMP can 

use in its processing of data values, addresses or line numbers, and output, making the build very 

restrictive in computing power but easier to comprehend and assemble. Even so, the CHUMP is 

still a complex circuit and is divided up into sub circuits. These subcircuits include the CHUMP 

clock, the program counter, the program and control EEPROM, the multiplexer, the ALU, the 

accumulator, the RAM, and the address. Power must be 5 volts as most of the IC’s used are TTL 

chips that require 5 volts specifically. Color coded wires help with identifying the different 

functions of the wires for a more understandable, organized, and easily debuggable build and a 

7805 voltage regulator with filter caps allow for an input of more than 5 volts. So far, green 

wires connect and transmit clock signals while yellow ones are for address lines. Red and black 

wires are used for Vcc and ground respectively. 

 

Part A: The Clock 

 

Purpose 

The purpose of the clock circuit is to provide a universal time constant that synchronizes all 

CHUMP components to properly execute in instructions in the correct order similar to how time 

on Earth does the same to humans. Wires corresponding to the working of the clock are coloured 

green. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#tasks 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/A%20Simple%20and%20Affordable%20TTL%20Pro

cessor%20for%20the%20Classroom.pdf 

https://youtu.be/kRlSFm519Bo  

https://youtu.be/81BgFhm2vz8  

  

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#tasks
http://mail.rsgc.on.ca/~cdarcy/Datasheets/A%20Simple%20and%20Affordable%20TTL%20Processor%20for%20the%20Classroom.pdf
http://mail.rsgc.on.ca/~cdarcy/Datasheets/A%20Simple%20and%20Affordable%20TTL%20Processor%20for%20the%20Classroom.pdf
https://youtu.be/kRlSFm519Bo
https://youtu.be/81BgFhm2vz8


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

158 

 

Procedure 

The most important part of a computer is its 

clock. This clock determines the computer's speed 

and is the heartbeat to executing code stored on 

the CHUMP where once clock cycle equates to 

both fetching and executing an instruction. This 

clock is comprised of a rising and falling edge 

automatically generated by a 555 timer in astable 

mode or manually generated by a simple pull up 

resistor and push button, allowing the user to fully 

understand what the computer is doing before 

moving on to the next clock cycle and therefore, 

next instruction.  

 

The speed of the astable 555 timer can be 

adjusted with a potentiometer, increasing the RC 

charge and discharge time of its supporting 

external components with a higher resistance and 

vice versa. For the manual clock signal, another 555 timer is also used but is put into monostable 

mode. This means that the 555 timer is stable on the low state and becomes high for a set amount 

of time when a high signal, in this case the push of the push button, is fed into it. When the 

button is released, the output stays high for the set amount of time no matter the input, 

effectively removing button bounce by the timer blocking any spikes, and then becomes low 

once the time runs out. The monostable circuit configuration is shown below. 

 

To switch between a manual or automatic clock 

pulse, a simple SPDT switch is controls whether 

the output pin of the switch is connected to the 

manual or automatic signal. At first, when directly 

wiring the two signals to the inputs and then 

wiring the output to the program counter, the next 

part of the CHUMP build, the output would glitch 

when switching modes. This was solved by 

putting a pull down resistor on the output to 

prevent the output pin from floating when in the 

middle of pulling the switch. The problem with 

the floating state of the pin is that it is susceptible to noise which produces extra unwanted clock 

signals.  

 

This configuration takes up less space than the clock circuit built by Ben Eater while still 

providing the around the same functionality excluding the halt function which can be forgone by 

switching the clock to manual mode and not pressing the button. This overall configuration was 

chosen for conserving breadboard space in case of any extra extensions that may be added to the 

CHUMP. 

Parts Table 

Quantity Description 

1 PB machine 

2 555 timer IC 

1 7805 5V regulator 

1 10 k potentiometer 

1 PBNO button 

2 10 F capacitor 

1 SPDT switch 

2 5mm red LED 

1 0.1 F capacitor 

1 3mm green LED 

3 470  fixed resistor 

3 1 k fixed resistor 

1 10 k fixed resistor 

1 1 M fixed resistor 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

159 

 

Media 

 

 

The clock circuit section 

 

The output pin is temporarily floating when 

switching. Solved using a pull down resistor  

 

Part B: The Program Counter 

Purpose 

The purpose of the program counter is to track and output which line number/instruction the 

CHUMP is executing. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#tasks 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/74LS161.pdf 

 

Procedure 

The output of the clock signal is fed into the 

SN74LS161 program counter which outputs a 4-

bit binary number that increments by 1 every 

rising edge, exactly like the 4516 binary up down 

counter explored in Project 1.4: The Counting 

Circuit. Like the 4516, it has a ripple carry pin for 

cascading multiple program counters for 

extending the count to 8 bits. Unlike the 4516 

however, the program counter has a few more 

functions such as the clear and load functions.  

 

 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#tasks
http://mail.rsgc.on.ca/~cdarcy/Datasheets/74LS161.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

160 

 

The clear and load function are both active low pins which means when the clear pin is pulled 

low, the count resets to 0 and when the load pin is pulled low and the clock rises the count jumps 

to the binary number on the input pins. Clearing the line number is useful for resetting the 

computer and loading a line number is crucial to jump to a certain line number to execute a 

specific instruction.  

 

When configured to work with the CHUMP, the 

pins are wired to manual inputs such as a pull  

up resistor configured push button connected to 

the clear pin and a 4-pin DIP switch, a NAND 

gate and two push buttons this time with pull 

down configurations controlling the load function. 

The clear pin configuration is pretty self-

explanatory; the button is pushed, sending a low 

signal to the clear pin which sets the count to 0 

while the load pin configuration is a bit more 

complicated. A NAND gate first takes in two 

inputs and outputs a its signal to the load pin. The 

output is low, which set the line number to the 

input pin presets on the next rising edge of the clock, when both inputs are high and for the rest 

of the input configurations, the NAND gate outputs a high, keeping the program counter 

counting normally. To set the inputs, a 4-pin DIP switch configured with 1 k pull down 

resistors (10 k resistors will not deliver enough current) assigns in binary what number the 

program counter will jump to when the load pin is low from the NAND gate with two push 

buttons and the clock signal rises. It should be noted that the manual controls such as the push 

buttons and the dip switch for the load function will be replaced later on with outputs from other 

IC’s in the later stage of the CHUMP build. For now, they are used for demonstration purposes 

of the program counter load function.  

 

Media 

  

LED’s display the current line number 

(leftmost is LSB and rightmost is MSB 

Orange clears while the two black buttons load. 

DIP sets input to load 9 

Parts Table 

Quantity Description 

1 SN74LS161 

1 SN74LS00 NAND 

1 4-bit DIP switch 

3 PBNO buttons 

1 3mm green LED 

3 470  fixed resistor 

4 1 k fixed resistor 

3 10 k fixed resistor 

4 5mm green LEDs 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

161 

 

Part C: Program EEPROM 

Purpose 

The purpose of the program EEPROM is to store the a custom CHUMP program consisting of 

code made up of 8-bits for each line burned into the EEPROM addresses. This is similar to 

creating an Arduino sketch with code and uploading it to the processor. 

 

References 

https://youtu.be/BA12Z7gQ4P0  

https://github.com/rsgcaces/AVROptimization/tree/master/AT28C16EEPROMShieldVersion 

 

Procedure 

This next IC, the AT28C16 program EEPROM 

was an optional endeavor in this week’s 

submission. It can store 2KB of addresses each 

holding 8-bits. This means there are 11 address 

pins (211 = 2048) and 8 I/O pins that output/input 

the 8-bit number when a certain address is 

selected through binary inputs when 

reading/writing respectively. To read the data of 

an address on the EEPROM or to write to an 

address on the EERPOM, a write enable pin is 

used. This pin is active low, meaning a low signal 

will write the states present on the 8 I/O pins to 

the address that is selected through binary highs 

and lows. According to the data sheet, this 

specific low time for proper writing is around 680 nanoseconds. To display the contents, the 

output enable should be high and the address pins are selected with a binary input. One could 

upload custom code by hand as shown in Ben Eater’s video on replacing combinational logic 

with EEPROM but for time and effort sake, an EEPROM burner utilizing the ATmega328P with 

the Arduino IDE was made and used to make writing as easy as possible. The Arduino code used 

to upload custom code can be found in the references section.  

 

Since the code is limited to a maximum of 16 

lines in the CHUMP, address A0 to A3 will only  

be used so the rest will be grounded. Therefore, 

when building the EEPROM programmer circuit, 

only those addresses need to be connected to the 

microcontroller which saves on wiring.  

  

Parts Table 

Quantity Description 

1 AT28C16 

1 Arduino NANO 

1 220  resistor network 

1 10 LED bar graph 

1 USB C to B cable 

https://youtu.be/BA12Z7gQ4P0
https://github.com/rsgcaces/AVROptimization/tree/master/AT28C16EEPROMShieldVersion


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

162 

 

These four addresses are selected by the program counter and the 8-bit code programmed onto it 

is outputted from the selected address onto its output pins which will lead to the Control 

EEPROM later on. For now, the output is shown on a bar graph with a current limiting resistor 

network. 

 

A possibility of extending the CHUMP build is to access the rest of the 7 unused program 

EEPROM addresses for writing 27 or 128 different sketches! Here, the high 7 bits control the 

sketch/program number while the low 4 are still used for the line numbers. These sketches can be 

toggled on and off using DIP switches or something similar depending on which one the user 

wants to run. This extends the use of the CHUMP a lot further as it can hold and output multiple 

programs without the EEPROM needing to be overwritten. 

 

Media 

  

Program counter output is wired to pins A0 

to A3. LEDs moved to show correct binary 

output 

 

Output assembly code stored in addresses 

selected by the program counter is shown on 

the bargraph 

 

 

 

Custom EEPROM burner using an Arduino 

NANO on a breadboard 

 

An EEPROM burner shield that fits on an 

Arduino UNO 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

163 

 

Code Structure 

Purpose 

The purpose of this section is to design custom binary (machine) code and for writing programs 

that drive the CHUMP processor and output useful information.  

 

References 

https://codepen.io/davefdavef/full/WNxRpMR 

 

Procedure 

The beauty of designing a 4-bit computer from scratch is the ability to design your own coding 

language. This coding language, dubbed the Chumpanese language by its creator, David 

Feinberg, is the lowest of low-level coding as each bit and byte can and will be controlled 

allowing unprecedented freedom to a level way beyond the mid-level coding of ports on the 

ATTiny and mega series or the severely restrictive high-level language of the Arduino IDE. As 

explained in the program EEPROM section, each line will contain an 8-bit instruction or 

machine code that will perform a specific function. The basic rundown of the way Feinberg 

designed the Chumpanese language is for the 8-bits to be split into a high-nybble and a low-

nybble. The high-nybble is the op-code, indicating which operation the processor should perform 

and the low-nybble is the operand value limited to 4-bits, that is used as a data value, a RAM 

address, or a program line number. A table of all the operations is shown below: 

 

OpCode 

(Machine) 

Operand 

(const/mem) 

Mnemonic 

(Assembly) 

High-level Summary 

0000 const 
LOAD 

accum = const; pc++ 

0001 mem accum = mem[addr]; pc++ 

0010 const 
ADD 

accum += const; pc++ 

0011 mem accum += mem[addr]; pc++ 

0100 const 
SUBTRACT 

accum -= const; pc++ 

0101 mem accum -= mem[addr]; pc++ 

0110 const 
STORETO 

mem[const] = accum pc++ 

0111 mem mem[addr] = accum pc++ 

1000 const 
READ 

addr = const; pc++ 

1001 mem addr = mem[addr]; pc++ 

1010 const 
? 

? pc++ 

1011 mem ? pc++ 

1100 const 
GOTO 

pc = const; pc++ 

1101 mem pc = mem[addr]; pc++ 

1110 const 

IFZERO 

accum == 0 ?  

  pc = const : pc++ 

1111 mem accum == 0 ? 

  pc = mem[addr] : pc++ 

https://codepen.io/davefdavef/full/WNxRpMR


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

164 

 

To break down this complicated table, the terms will be explained first. The op-code is the high-

nybble of the 8-bit program code. Here, it is divided into two parts: the high three bits control 

what operation is being carried out while the least significant bit decides whether the operand is 

interpreted as a constant value defined by the low-nybble of the 8-bit program code or a RAM 

address, in which case the low-nybble of the program code is ignored. The accumulator 

(addressed as accum in the table) serves as the 4-bit output to the CHUMP where displayed 

values over 15 will roll over to 0 while pc stands for the program counter line number. Mem 

stands for the RAM IC while addr is defined as the address number located in mem or RAM, 

similar to how EEPROM stores its data in address numbers. The question marks are undefined 

functions which will later be defined as unique operators later in the final CHUMP build. 

 

Here is a brief summary of what all the defined operators in the table do: 

 

• LOAD (const): Sets the output of the accumulator to the constant defined in the low-

nybble of the program code. Program counter increments by 1. 

• LOAD (mem): Sets the output of the accumulator to the value in a specified RAM 

address. To specify the address, this function should be preceeded by a READ (const) to 

place a 4-bit value into the address register. Program counter increments by 1. 

• ADD (const): Increases the accumulator by the defined constant value. Program counter 

increments by 1. 

• ADD (mem): Increases the accumulator by the value in the defined address of RAM. 

Should be preceded by a READ (const) function as with all memory functions. Program 

counter increments by 1. 

• SUBTRACT (const): Decreases the accumulator by the defined constant value. Program 

counter increments by 1. 

• SUBTRACT (mem): Decreases the accumulator by the value in the defined address of 

RAM. Program counter increments by 1. 

• STORETO (const): Stores the value in the accumulator to an address number in RAM 

specified by the const value. Program counter increments by 1. 

• STORETO (mem): Stores the value in the accumulator to an address number in RAM 

specified by the value in the defined address of RAM. Program counter increments by 1. 

• READ (const): Sets the address value to the const value (low-nybble in the 8-bit in the 

program code). Program counter increments by 1. 

• READ (mem): Sets the address value to the value in the defined address of RAM. 

Program counter increments by 1. 

• GOTO (const): Sets the program counter (aka line number) to the const value. Program 

counter increments by 1. 

• GOTO (mem): Sets the program counter to the to the value in the defined address of 

RAM. Program counter increments by 1. 

• IFZERO (const): If the accumulator output is 0, the program counter is set to the const 

value, else the program counter advances by 1. 

• IFZERO (mem): If the accumulator output is 0, the program counter is set to the value in 

the defined address of RAM, else the program counter advances by 1. 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

165 

 

Here is an example CHUMP program written in Chumpanese that will run on the final CHUMP 

build. It simply takes the value in the accumulator, processes it, and infinitely loops on the 

squared value that was put into the accumulator. In the example code, an input value of 3 was put 

in so a output value presented on the accumulator will be 9. This code was made and tested with 

the help of Feinberg’s online CHUMP simulation.  

 

High Level Machine Level CHUMP 

(Assembly) 

Comment 

Address Instruction 
x = 3; 0000 (0) 0000 0011 LOAD 3 Accum3, pc++ 

 0001 (1) 0110 0101 STORETO 5 Accum[5], pc++ 

y = 3; 0010 (2) 0110 0110 STORETO 6 Accum[6], pc++ 

while(x != 0){ 0011 (3) 1110 1110 IFZERO 14 accum==0 ? pc14 

: pc++ 

  x--; 0100 (4) 0010 0001 SUBTRACT 1 Accum-=1, pc++ 

 0101 (5) 0110 0101 STORETO 5 Accum[5], pc++ 

 0110 (6) 1000 0111 READ 7 Addr7, pc++ 

  z = x 0111 (7) 0001 0000 LOAD IT accum[7], pc++ 

 1000 (8) 1000 0110 READ 6 addr6, pc++ 

  z += y 1001 (9) 0011 0000 ADD IT accumaccum+[6], 

pc++ 

 1010 (10) 0110 0111 STORETO 7 Accum[7], pc++ 

 1011 (11) 1000 0101 READ 5 addr5, pc++ 

  z = x 1100 (12) 0001 0000 LOAD IT accum[5], pc++ 

} 1101 (13) 1100 0011 GOTO 3 pc3 

x = z; 1110 (14) 1000 0111 READ 7 addr7, pc++ 

 1111 (15) 0001 0000 LOAD IT accum[7], pc++ 

 

There are still a few problems with it such as the need set address 7 to 0 by cutting power off to 

erase the RAM for the program to function properly after 1 iteration (assuming that cutting 

power sets all addresses to 0). This is because of the 16 line restriction of the program counter so 

it is unable to support the few extra lines that erase the specified address of RAM. The way to 

solve this would be cutting down the number of lines used by eliminating and shortening verbose 

lines of code, which can be done. However, the writer of this report spent an absurd amount of 

time burning an obscene amount of calories from brain usage of first trying to figure out how to 

put it into Chumpanese, then trying to shorten it and then finally giving up to work on a modulus 

function (that isn’t working yet…) which further emphasized the pain and voices in his head. So, 

here it is so far, but rest assured that this code will be improved in the next CHUMP report. A 

more detailed explanation of the code and how each line works is covered in the YouTube video. 

 

Media 

YouTube video link: https://youtu.be/b5qDwCN9Q2c  

 

 

 

https://youtu.be/b5qDwCN9Q2c


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

166 

 

Reflection 

This circuit is definitely akin to first building the counting circuit in grade 10. New parts were 

introduced, there was a lot of breadboarding, but most importantly, it was challenging and time 

consuming with a lot of room for errors. The part that was the most frustrating and had me the 

most stuck was figuring out how to create my custom made squaring code and then trying in vain 

to shorten it. I then gave up and tried to create a modulus function CHUMP program, which also 

ended up not working. Since I wasn’t making any progress with them, I tried harder and harder, 

getting more and more tired and angry as I couldn’t bear not fixing it. Eventually, after a long 5 

or 6 hours, I managed to let go and moved on to the more pressing DER report. Thinking back, I 

really wish I could have stopped earlier as I suffered a price for spending all my time and energy 

on the code (the price being staying up very very late at night). Another experience that was 

similar was my stubbornness of wanting to include animations in my video from a program 

called Manim. These animations are neat and look wonderful as showcased by its creator 

3Blue1Brown (https://www.youtube.com/c/3blue1brown) and I was really looking forward to 

including them in my video as its theme fits in well to explaining the Chumpanese code 

language. However, like my custom code, I had trouble with figuring out the python code 

required to make animations as it was my first time using it, but I was stubborn to make it work. 

So a lot of time went into trying in vain instead of doing the more important things such as my 

DER or actual content of my video. These experiences has therefore taught me that it is ok to let 

go of things you can’t fix right away and move on so as not to waste time, and then eventually 

come back to it with a fresh mind. So before the final CHUMP build project starts, I will take my 

time to improve my code and learn how to use Manim so that it can be included in my final 

CHUMP video as the animations that you can create, even ones with simple numbers and shapes, 

are simply too beautiful and perfect for explaining CHUMP. 

  

https://www.youtube.com/c/3blue1brown


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

167 

 

Project 3.3: CHUMP Final 

 
 

Purpose 

The purpose of this project is to build and understand the rest of the components that make up 

the 4-bit CHUMP computer. Pictured below are the rest of the components needed to complete 

the CHUMP build. The functionality of the CHUMP includes custom code that can perform 

basic arithmetic functions, conditional statements, and memory storage to keep data for later use. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

168 

 

 

Theory 

With the CHUMP complete, here is an overall rundown. First, 555 timers with variable 

frequency and modes provide a clock signal to synchronize all components. The clock is 

connected to the program counter and accumulator and address flip-flops. Next, the program 

counter takes in this clock signal and increments its 4-bit binary counter on the rising edge. This 

counter determines the line number with an 8-bit piece of code that the CHUMP executes. To do 

this the outputs of the counter are routed to the program EEPROM where the code written by a 

user is located. The outputs then select the 8-bit line of code to execute from the program 

EEPROM. This 8-bit code is the custom chumpanese language containing an op-code in the high 

byte and a constant value in the low byte. The op-code determines the function that the CHUMP 

performs and the constant is the numerical value attached to that function. All this was done in 

the first part of the CHUMP build.  

 

Since the op-code is in chumpanese, it must be translated into usable machine code where each 

bit controls a specific component. To do this the op-code is passed through another EEPROM 

designated as the control EEPROM outputting the machine code, referred to as control bits, from 

the inputs of the op-code. The constant does not need to be translated into machine code as it is 

in the native binary that all chips can understand. This constant is fed into a multiplexer which 

chooses with a control bit between the constant in the program EEPROM of a value read from 

RAM. The output of the multiplexer then is fed into the ALU, program counter and address flip-

flops as the constant can represent an operand, a line number for the program counter to jump to, 

or a location to store to or read values from RAM. The ALU computes two 4-bit operand values 

with an operator chosen from the control bits. The result is presented on the accumulator flip-

flops whose output can be enabled or disabled using a control bit. The output of the accumulator 

is then fed into one of the operand inputs of the ALU with the other operand coming from the 

multiplexer. The RAM stores the output of the accumulator into a selected address and the RAM 

outputs are then fed into the input of the multiplexer. A control bit tells the RAM whether to read 

a value, where it reads data from the selected address, or writes a value where it stores the 

accumulator value in the selected address. This is overall the basic rundown of CHUMP. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

169 

 

Since the CHUMP is built on breadboards, a layout of all the IC’s is crucial to a neat and 

understandable build. I placed components in such a way to balance organization and size which 

proved to be an arduous task of planning and visualizing. Eventually, a decent layout was made 

with a compact size of three breadboards as opposed to four without sacrificing too much 

organization. The layout could be even more orderly by rearranging and shortening wire lengths 

but I felt that the time and effort could be better spent elsewhere. 

 

An easy way of improving visual understandability without having to rewire and reorganize was 

to use coloured wire corresponding to the type of data it carries. In my CHUMP build, there are 

four main types of colors: green, yellow, blue, and white. Green was used for wires transmitting 

or generating clock signals. Yellow was defined as address wires that serve to read data from or 

direct data to specific addresses. Blue lines carry data values such as the operands of the ALU, 

outputs of RAM, and any inputs or outputs with a 4-bit binary value that does not correspond to 

an address value. Finally, white wires symbolize the control bits of the machine code. With this 

colour scheme, it is easier to debug and understand the CHUMP and provides visual appeal. The 

block diagram with the data lines as blue, the address lines as yellow, and green arrows as clock 

connections is shown below. 

 

 
 

 

Also, labels were used for each IC and the LED outputs corresponding to the value that the IC is 

handling were also labeled, further improving the readability. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

170 

 

Control EEPROM 

 

The binary chumpanese code in red vs the binary control code in blue for the function ADD 1 

 

 

Purpose 

The first part of the final CHUMP build is wiring up the control electronically erasable program 

read-only memory (EEPROM) which converts the chumpanese language code outputted by the 

program EEPROM into machine code that acts as logic inputs to certain components to influence 

their output and CHUMP behavior.  

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html 

 

Procedure 

The control EEPROM architecture is the same as 

the program EEPROM as they both use the same 

AT2816C chip, however, they are both loaded 

with different programs. The program EEPROM 

takes in a custom code written in the Chumpanese 

language while the control EEPROM converts 

this language into usable high and low outputs 

that directly control the rest of the components 

such as the ALU, the RAM, and the accumulator. 

These outputs are called machine code which is 

the lowest level and most intricate type of coding 

as it takes a complete understanding of the 

computer architecture and the subsequent 

components to understand what each bit is doing 

and hence understand the code.  

 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

171 

 

The control EEPROM is wired similar to the program EEPROM except that the address select  

pins of the control are wired to the I/O pins of the program which output the chumpanese codes. 

Since the chumpanese codes are split into a high byte consisting of an op-code function and a 

low byte corresponding to the constant portion, only the op-code will be routed to address pins 

A0 to A3 of the control EEPROM. The constant byte is already at its simplest binary form so it 

does not need to be converted. All other address pins are tied to ground to avoid floating pins 

which affect what addresses the EEPROM reads and data it outputs. A0 can be further tied to 

ground since the lowest bit of the op-code corresponds to selecting between the read and write 

function of the RAM. In the chumpanese language, this is identical to selecting between a 

constant or an IT. This bit from the program EEPROM can be directly wired to the select pin of 

the multiplexer which is explained in the multiplexer section. So in total, the control EEPROM 

only takes in 3 bits from the program EEPROM which can represent numbers 0 to 7. These 

numbers each represent one of the functions defined in the chumpanese code so each function 

will have its own unique control code.  

 

Like the chumpanese code, the control codes consist of a high byte and low byte split into 

separate functions. The high byte contains the select lines that chooses the arithmetic function 

that the ALU performs. The low byte comprises a mix between a mode and carry input function 

connected to the ALU and an accumulator enable bit and read/write bit. These two bits are wired 

to the accumulator and RAM respectively. The table shown below links each function with the 

corresponding control codes.  

 

Instruction Sel (ALU) S3 S2 S1 S0 M Cn Accum R/W 

LOAD const 0 B 1 0 1 0 1 X 0 1 

LOAD IT 1 B 1 0 1 0 1 X 0 1 

ADD const 0 A plus B 1 0 0 1 0 1 0 1 

ADD IT 1 A plus B 1 0 0 1 0 1 0 1 

SUBTRACT const 0 A minus B 0 1 1 0 0 0 0 1 

SUBTRACT IT 1 A minus B 0 1 1 0 0 0 0 1 

STORETO const 0 X X X X X X X 1 0 

STORETO IT 1 X X X X X X X 1 0 

READ const 0 X X X X X X X 1 1 

READ IT 1 X X X X X X X 1 1 

USER const 0          

USER IT 1          

GOTO const 0 Logic 1 1 1 0 0 1 X 1 1 

GOTO IT 1 Logic 1 1 1 0 0 1 X 1 1 

IFZERO const 0 Not A 0 0 0 0 1 X 1 1 

IFZERO IT 1 Not A 0 0 0 0 1 X 1 1 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

172 

 

Arithmetic Logic Unit (ALU) 

 
 

Purpose 

The 74LS181 Arithmetic Logic Unit (ALU) acts as the brain and CPU of the CHUMP by 

providing and computing a plethora of arithmetic and logical functions.  

 

References 

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html 

 

 

Procedure 

The 74LS181 ALU is a 24-pin chip that computes 4-bit arithmetic and logic functions and can be  

chained together to increase the computation bit size. It played a key role as the CPU in early 

computers. The previous ALUs were built out of simple logic gates such as full adder circuits 

chained together but the 74LS181 produced by Texas Instruments revolutionized the ALU by 

optimizing for speed and high performance with an unconventional complex implementation of 

logic gates housed in a TTL chip.  

 

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html
http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

173 

 

The chip's arithmetic functions are based on 16 

logic functions selected by the S0 to S3 pins. The 

binary inputs of these functions can only be 4 bits 

in length and are labeled as A0 to A3 as the one 

input and B0 to B3 as the second. The output is 

presented on the function output pins F0 to F3. 

When all of these function output pins are high, 

the A=B pin output pin will become high which 

will be crucial to performing the GOTO function. 

This is an open collector pin, meaning a pull-up 

resistor is needed to stop the pin from floating 

when a low is not present. By combining the addition of input A with these logic functions, the 

arithmetic functions can be created. To switch between logic functions to an arithmetic one, the 

mode pin and carry pin alter the function depending on its state. The mode adds A to the 

resulting output of one of the 16 logic functions and the carry pin simply adds one the overall 

value. A table consisting of all the functions and how to select each one is shown below. 

 
As an example, the arithmetic operation of addition consists of the logic function F = B 

combined with a high present on the mode pin and a low carry pin. Since arithmetic functions are 

created from adding the A input to the output of the logic function of the A and B inputs, the 

outputs presented on the F0 to F3 pins will be A added to B. This is done by making use of three 

other internal 4 bit variables in the ALU which are the carry-lookahead (C), the propagate (P) 

and generate (G) bits.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

174 

 

The carry lookahead removes the ripple carry 

effect of carrying each bit to the next highest bit, 

similar to doing long addition by hand. Adding 1 

to 9999 means that the 1 must be carried through 

each column to the next which is computationally 

slow. To avoid this serial way of adding, the ALU 

computes all the carries before doing the addition 

and then adds these carry bits to the input in a 

column-wise fashion. Coming back to the example of adding 1 to 9999, this method would 

calculate the carry bits as 11111, as there are 5 carries in the operation, and then add each 9 to 

the carry bit to produce each digit of the result. This involves four 9+1 operations and a 0+1 the 

resultant of which is 10000. How the ALU achieves this is through the P and G signals 

calculating whether a carry can be generated or not in a certain bit position (the 1s bit, the 2s bit, 

the 4s bit, etc). For example, when A and B inputs of a certain bit position are both low, no carry 

can be generated regardless of the carry pin adding 1 or 0. When A and B are both high, a carry 

will always be generated. This is a generated case and the G bit will be set to high. When A or B 

is high and A or B is low, a carry depends on the carry pin. This is a propagate case and the P bit 

will be set high. Putting these cases together, a carry bit can be calculated from putting the carry 

pin, P, and G bits through the following logic: P AND (Cn OR G).  

 

This only applies for the first carry bit. Other higher-order bits have more combinations that 

generate or don't generate a carry bit. The logic can get very complicated so it will not be 

explained here. For more detail check out Ken Shirrifs blog where he explains the chip's logic 

and structure in detail and even provides an interactive and detailed simulation of the ALU.  

 

While all arithmetic functions use the carry bits in some way, logic functions do not. Setting the 

mode pin high sets all carry bits high, disabling its function. This yields an overall output of 

NOT(A XOR f) for each bit of the output where f are the select pin inputs. For arithmetic 

outputs, Fn, they are each formed through Cn XOR Pn XOR Gn where Cn are the carry bits and 

n is the bit position. 

 

To use the ALU, one only needs to understand how each pin changes the function of the ALU as 

described in the ALU function table, however, an internal understanding of the chip always 

helps. In the case of the CHUMP build, the rest of the components only interact with the external 

inputs and have nothing to do with the internal logic that goes on so it is not explicitly required 

to understand it to build the CHUMP. These external inputs come from the control EEPROM 

outputs as mentioned in the control EEPROM section. Now that an understanding of the ALU 

has been established, the control codes start to make sense. For the subtraction function, the high 

byte 0110 of the control code corresponds to selecting the row of the table in which the subtract 

function is located and the two high bits on the low byte select the column. Here, both mode and 

carry are low to select it.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

175 

 

Media 

 

LEDs show ALU F0 to F3 outputs 

 

Multiplexer 

 

Output of the multiplexer 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

176 

 

Purpose 

The multiplexer decides whether the input to the ALU comes from the 4-bit constant in the 

program EEPROM or a 4-bit value read from the RAM. In the context of transportation, it acts 

as a rail selector to direct trains to certain locations. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html 

 

Procedure 

The SN74LS157 Quad 2-line to 1-line data selector/multiplexer is a simple chip that takes in two 

 4-bit inputs and selects which one is presented on its output pins through the usage of a select 

pin. The input pins are A1 to A4 and B1 to B4 while the output pins are Y1 to Y2. The select line 

pin sets the outputs equal to the A inputs if it is low or the B inputs if it is high while the strobe 

when high sets all outputs to low. 

 

In the context of CHUMP, the A input line comes 

from the 4-bit constant of the 8-bit chumpanese 

code in the program EEPROM which is the low 

byte. The B inputs come from the RAM outputs. 

The select pin is wired to the lowest bit of the op-

code portion of the program EEPROM output. As 

a reminder, this bit controls whether the function 

selects the constant shown or a value from RAM 

(denoted as IT). The addition of the multiplexer 

allows this operation to function. The outputs 

whether from the constant or RAM are then 

routed to the B inputs of the ALU. They are also connected to the address D flip-flops for RAM 

storage and the program counter inputs to select a certain value to present on the program 

counter outputs. The reason for this is discussed in the other sections. 

 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

177 

 

Accumulator 

 

The binary chumpanese code in red vs the binary control code in blue for the function ADD 1 

 

 

Purpose 

The purpose of the accumulator is to present and temporarily store and use the outputs from the 

ALU. The outputs of this chip can be considered the final result of the CHUMP code that the 

user receives. 

 

References 

https://www.electronics-tutorials.ws/sequential/conversion-of-flip-flops.html 

 

Procedure 

The 74LS377 accumulator register is a 20-pin IC that houses a bank of 8 D-type flip-flops.  

Hence, it is not formally called the accumulator but is instead referred to as an octal quad d-type 

flip-flop IC as there are 8 in total and 4 on either side. These are denoted by the Q and D letters 

where D is the input and Q is the output. The enable (E) pin controls whether the outputs are 

presented and the clock pin takes in a clock signal.  

 

https://www.electronics-tutorials.ws/sequential/conversion-of-flip-flops.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

178 

 

The D-type flip flop or a data type flip flop is a 

flip-flop/SR latch with some extra gates to take in 

a data bit and a clock signal. As a quick 

recap/rundown, a flip-flop takes in two inputs: a 

set and a reset pin and outputs Q and Q_ where 

Q_ is the NOT or opposite of Q. The set pin when 

changing states switches the outputs states hence 

the name flip-flop and when the set pin switches 

states, the outputs do not change hence its other 

name as an SR (set-reset) latch. Only when the 

reset pin is triggered does the output revert back 

to its original state where it can be latched again. 

 

The D-type flip-flop contains the regular flip-flop along with two extra NAND gates and an 

optional inverter which is there to make sure that the S and R pins are complements of each 

other. It can be omitted by connecting the output of the NAND gate to one of the inputs on the 

other NAND gate, saving a gate. Essentially, this type of flip flop makes the output Q follow the 

D input on the rising edge of the clock signal.  

 

In the context of the CHUMP, the inputs to the D inputs are from each bit of the F0 to F3 output 

pins of the ALU. LEDs connected to the Q outputs of the flip-flops present the output to the user. 

These outputs are also connected back to the A inputs of the ALU to facilitate adding, 

subtracting, and other functions of the output with the B inputs of the ALU. So the code ADD 3 

adds the output shown on the accumulator (representing the A input) with the value 3 

(representing the B input) that comes from the multiplexer. The clock pin of the accumulator 

originates from the clock signal generated by the 555 timers, latching the outputs shown and 

allowing temporary storage. It also prevents the ALU from constantly changing its outputs as 

fast as it can by synchronizing this change with the clock signal. Therefore, the ALU output will 

always be one step ahead of the accumulator outputs. The enable pin is attached to one of the 

control bits wired to the control EEPROM. By doing so, the CHUMP program can control the 

output shown from the inputs of the F0 to F3 pins on the ALU. A GOTO function for example 

will temporarily change all F0 to F3 pins high. By setting the enable pin high to disable the 

change in the outputs, the true arithmetic output is preserved and not altered to 1111. The 

accumulator outputs also connect to the data in pins of RAM to store the output data. This is 

discussed in the RAM section. 

 

With the chips set up so far (555 clock, program counter, program, and control EEPROM, 

multiplexer, ALU, and accumulator) some chumpanese operations can be performed such as the 

ADD, SUBTRACT, and LOAD as these functions only involve these components. The other 

four functions require changes to the previous circuitry or setup of the remaining address flip-

flops and RAM ICs.  

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

179 

 

Other Changes 

 

New implementation of the NAND gate 

 

Purpose 

Before moving on to implementing the rest of the ICs, it is important to note the changes that 

have occurred to the program counter section as it was necessary to do so to add certain 

functions. These functions are the GOTO and IFZERO functions that set the program counter to 

a certain value to execute the specified instruction located on the program EEPROM.  

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html 

  

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

180 

 

Procedure 

The changes that have been made are the inputs to the load pin and the load input pins. In the 

code, clock, and counter circuit, these were originally controlled by two push buttons and a 4-pin 

DIP switch respectively. Now, they are wired electronically to implement the GOTO and 

IFZERO functions. To do so, the input load pins were wired to the multiplexer output as the 

number constant data from either the program EEPROM or RAM are passed through, allowing 

the program counter to jump to the number in the constant data specified from those chips. To set 

the program counter to the binary number present on these load input pins, the two push buttons 

connected to the inputs of a NAND gate are replaced by wires connecting a control bit and a Z 

flag bit. The Z flag bit comes from the A=B open-collector pin on the ALU which turns high 

once all output pins are high. This is why the op-code in the control EEPROM specifies a Logic 

1 for GOTO and Not A instruction for IFZERO as all output bits will turn on, triggering the A=B 

pin, if logic 1 is called or if Not A is true. This will load the program counter to the number in 

the constant or data read from RAM. To do this the A=B pin is simply wired to the input of the 

NAND gate whose output connects to the load pin on the program counter.  

 

Unfortunately, the control bit to trigger GOTO and IFZERO is not included in the control 

EEPROM as there are not enough bits. It is also not an option to forgo this bit since if all outputs 

are high on the ALU for any reason, the program counter will always jump to the number 

presented on the data coming from the multiplexer whether it was intentional or not. The control 

bit is therefore required to only trigger this once a GOTO or IFZERO command has been called. 

To add this crucial bit, there must be a way to detect one of these commands to trigger this bit. 

Luckily, the chumpanese code functions were strategically ordered to save a control bit on the 

control EEPROM. Taking a look at these commands reveals that the two highest bits, bit 7 and 

bit 8 or the op2 and op3 op-code bits are simultaneously high in both GOTO and IFZERO. So, 

by wiring these two bits into an unused NAND gate on the 74ls00 IC it outputs a 0 only when 

one of these commands is called. Before it is wired to the input of the other NAND gate, the bit 

must be inverted. This is done on the CHUMP by wiring it to both inputs of a NAND gate, 

successfully flipping the bit. 

 

With these changes in place, the GOTO and IFZERO functions now work along with the ADD, 

SUBTRACT, and LOAD. All that is left to do is add in the READ, LOADIT, and STORETO 

functions by configuring the RAM and flip-flop address IC.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

181 

 

Hex D Flip-Flops 

 

Address outputs wired to RAM addresses with the red LED read/write state  

Purpose 

The purpose of this flip-flop IC is to assist in transmitting the address line value that the RAM is 

reading or writing from by syncing it up with the clock of the CHUMP. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html 

 

Procedure 

The 74LS174 hex flip-flop IC is a 16 pin DIP that is functionally the same as the 74LS337  

accumulator but contains 6 flip-flops instead of 8. It also does not have an enable but like the 

74LS337 it has a clear and clock pin which is positively edge-triggered along with the regular D 

inputs and Q outputs.  

 

In the CHUMP build four inputs are connected to 

the multiplexer output as the constant portion 

from the program EEPROM or RAM will specify 

the address in RAM to write or read for the 

STORETO and READ functions. As a reminder, 

these functions store data from the accumulator to 

a specified address of RAM or read data from the 

specified address of RAM. This is why this IC is 

referred to as the address IC and why its inputs 

are connected to the output of the multiplexer. 

The Q outputs are then connected to the address lines of RAM to determine where the data is 

read or written to. Along with these four address lines, a read/write bit is needed to be 

synchronized as well to decide between the two. It is fed from the lowest bit from the control 

EEPROM to a D input and the Q output travels to the read/write pin on RAM. The explanation 

of this bit and other pins on the RAM will be discussed in the RAM section. 

 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

182 

 

Random Access Memory (RAM) 

 

RAM outputs read from a selected address 

 

Purpose 

The RAM IC allows variables to be stored for later use in the program code. This is like using 

local and global variables in a code sketch which is necessary for more useful code.  

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html 

 

Procedure 

The 74LS189 RAM is a 16 DIP IC that houses 4-bit value in its 16 address registers. As a  

reminder, RAM stands for random access memory and unlike EEPROM it does not retain its 

contents after power is disconnected, therefore it is said to be volatile. This does not matter for 

the purpose it serves since the RAM is just a storage space for values that are used later in the 

chumpanese code and is not used for storing important permanent code. This specific 74LS189 

chip is designed for high-speed reading and writing.  

 

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

183 

 

The reading and writing functionality is what the 

READ and STORE TO functions are based on. 

Reading a value requires an address to be selected 

in RAM through its address pins A0 to A3 and the 

data is presented as its complement on outputs O1 

to O4. The complement of the data is simply the 

inverse where 1010 corresponds to 0101 on the 

output. Therefore, when reading a value from this 

RAM IC, the outputs must be passed through an 

inverter chip. Keeping with the TTL theme, a 

74LS04 inverter was used which contains six 

inverters, four of which were wired to the outputs of RAM. The outputs of RAM are also open 

collector which means that a pull-up resistor is required on all outputs of RAM. Without it, the 

output pins will be left floating. These outputs once configured with pull-up resistors and after 

passing through the inverters are ready to be used by the ALU. But first, it must pass through the 

multiplexer inputs of B1 to B4 to output the value from RAM or the constant portion of the 

program EEPROM. That is why the multiplexer is there along with the IT variants of all the 

functions since it determines if the value is coming from RAM or the code constant. However, 

every IT variant of a function must be preceded by a READ function to load the value from the 

selected address. Hence, a READ function must contain a constant value afterward to select the 

address of RAM to read from. So, a READ 5 function will output the value of address 5 of RAM 

and present it to the multiplexer and ALU. Then using an IT variant of any of the functions, the 

ALU will use the value from address 5 as one of its variables instead of the constant defined in 

the code.  

 

Before reading a value, data must be written to the addresses of RAM first. Since RAM is 

volatile, there must be a function in the chumpanese code that allows the storage of a value. This 

is the STORETO function. This utilizes the data input pins D1 to D4 and address select pins 

where data presented on these pins are stored to the address selected in binary using the address 

select pins. This is how STORETO works. It selects an address to store a value from the constant 

portion of STORETO. So STORETO 3 stores a value to address 3, presenting a binary value of 

0011 on the address register and then on the RAM address select pins once the clock reaches a 

rising edge. As a reminder, all constant values are routed through the multiplexer but originate 

from either RAM or a constant in the program. The value being stored in the selected address is 

the value that is presented on the accumulator. Therefore the outputs are wired to the data inputs 

of RAM. Once a STORETO command is called, the value is written with the help of a read/write 

bit connected to the write enable pin producing a low.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

184 

 

Updated Chumpanese Code 

Purpose 

This serves to update and improved Chumpanese code to replace the previous version. It also 

covers uploading the EEPROM data from an Arduino 

 

References 

https://github.com/rsgcaces/AVROptimization/blob/master/AT28C16EEPROMShieldVersion/A

T28C16EEPROMShieldVersion.ino 

 

Procedure 

The custom chumpanese code created in the first stages of CHUMP was discarded as it was 

inefficient and worked only when power was interrupted after the code was complete to erase 

RAM. Instead, a function that outputs the number of subtractions of operand B from operand A 

so that their differences 0 was created. This output is then infinitely looped on the accumulator. 

Calculating the function involves repeated subtraction of B from A and where A is updated with 

that value. A counter then counts the number of subtractions that have been performed. 

Eventually, the output will reach 0, at which point it will indefinitely loop with the accumulator 

presenting the number of subtractions it took, or the difference between A and B will become 

negative. Since the ALU is not set up to handle negative numbers, an output of -1 will loop back 

to 15 and the subtraction continues from 15. Eventually, the two operand differences will equal 0 

or the pattern will loop indefinitely. An indefinite loop example would be 7 and 2. If 2 is 

constantly subtracted from 7 where -1 loops back to 15, the result will never equal 0 as the 

output will always show odd numbers. However, for 15 and 7, constantly subtracting 7 from 15 

will yield 0 after nine subtractions. Calculating it by hand proves this true. This chumpanese 

code for this program is shown below with the example of 15 as the A operand and 7 as the B 

operand.  

  

https://github.com/rsgcaces/AVROptimization/blob/master/AT28C16EEPROMShieldVersion/AT28C16EEPROMShieldVersion.ino
https://github.com/rsgcaces/AVROptimization/blob/master/AT28C16EEPROMShieldVersion/AT28C16EEPROMShieldVersion.ino


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

185 

 

High Level Machine Level CHUMP 

(Assembly) 

Comment 

Address Instruction 
 0000 (0) 0000 0001 LOAD 1 accum1, pc++ 

n = 1; 0001 (1) 0110 1010 STORETO 10 [10]accum, pc++ 

X = 15 0010 (2) 0000 1111 LOAD 15 accum15, pc++ 

while(x != 0){ 0011 (3) 0100 0111 SUBTRACT 7 Accum-=7, pc++ 

  x = x-7 0100 (4) 0110 0000 STORETO 0 [0]accum, pc++ 

 0101 (5) 1110 1101 IFZERO 13 accum==0 ? pc13 

: pc++ 

 0110 (6) 1000 1010 READ 10 addr10, pc++ 

   0111 (7) 0001 0000 LOAD IT accum[10], pc++ 

 1000 (8) 0010 0110 ADD 1 Accum+=1, pc++ 

  n++ 1001 (9) 0110 1010 STORETO 10 [10]accum, pc++ 

 1010 (10) 1000 0000 READ 0 addr0, pc++ 

 1011 (11) 0001 0000 LOAD IT accum [0], pc++ 

} 1100 (12) 1100 0011 GOTO 3 pc3 

 1101 (13) 1000 1010 READ 10 Addr10 

println(n) 1110 (14) 0001 0000 LOAD IT addr [10], pc++ 

while(true) 1111 (15) 1100 1111 GOTO 15 pc15 

 

To select the different A and B operands an 8-pin DIP switch was wired to the A4 to A10 

address pins of the control EEPROM, taking advantage of the large storage size of the AT2816C. 

Since these are the remaining seven address pins, seven pins on the DIP switch are used where 

the highest four bits select A and the lowest three select B. Therefore, a maximum value of 15 

for A and 7 for B can be computed. To compute different A and B operands, the DIP switches 

are selected and the reset button is pressed. This functionality of choosing combinations of 

numbers required writing an additional 128 sketches with different load values corresponding to 

the binary value present on the DIP switch bank. So by selecting an A value and a B value to 

compute, the program EEPROM selects a specific 4-bit program out of the 128 that loads the 

chosen A operand and subtracts B from the chosen A operand. Here are some examples of 

outputs from different A and B inputs. Double-checking the math by hand proves the outputs to 

be true: 

 

Operand A Operand B (subtract operand) Output 

10 2 5 

14 13 6 

6 9 6 

4 3 12 

 

Programming the EEPROM with all 128 sketches required creating an Arduino sketch to do so. 

However, it does not yet work as the program EEPROM would not flash correctly. If time 

permits in the future, it will be fixed as it would be useful to take advantage of the large 

EEPROM space. The current state of the sketch is shown below: 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

186 

 

Code (Arduino C) 

 
 

// PROJECT  : 

// PURPOSE  : 

// COURSE   : 

// AUTHOR   : Xander Chin 

// DATE     : 

// MCU      : 

// STATUS   : Not Working 

// REFERENCE: 

 

#define DFLT  0xFF     //default byte contents for EEPROM write buffer 

byte codeWrite[16] = { DFLT, DFLT, DFLT, DFLT, //storage for code written 

                       DFLT, DFLT, DFLT, DFLT, 

                       DFLT, DFLT, DFLT, DFLT, 

                       DFLT, DFLT, DFLT, DFLT 

                     }; 

 

byte codeRead[16] = { 0, 0, 0, 0, //storage for EEPROM read buffer 

                      0, 0, 0, 0, 

                      0, 0, 0, 0, 

                      0, 0, 0, 0 

                    }; 

 

#define IO0          2 

#define IO1          3 

#define IO2          4 

#define IO3          5 

#define IO4          6 

#define IO5          7 

#define IO6          8 

#define IO7          9 

 

#define EEPROM_OE   10    // AT28C16 Output Enable  

#define EEPROM_WE   11    // AT28C16 Write Enable 

 

#define SER         16 

#define RCLK        17 

#define SRCLK       18 

 

#define PROG_SIZE sizeof(code) 

 

uint8_t operandA = 0; 

uint8_t operandB = 0; 

 

bool codeDIP = false; 

byte code[] = { 

  B00000001,    //load 1 

  B01101010,    //storeto 10 

  B00000000,    //load A 

  B01000000,    //subtract B 

  B01100000,    //storeto 0 

  B11101101,    //ifzero 13 

  B10001010,    //read 10 

  B00010000,    //load it 

  B00100001,    //add 1 

  B01101010,    //storeto 10 

  B10000000,    //read 0 

  B00010000,    //load it 

  B11000011,    //goto 3 

  B10001010,    //read 10 

  B00010000,    //load it 

  B11001111,    //goto 15 

}; 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

187 

 

 
  

 

void setup() { 

  Serial.begin(9600); 

 

  pinMode(SER, OUTPUT); 

  pinMode(RCLK, OUTPUT); 

  pinMode(SRCLK, OUTPUT); 

   

  pinMode(IO0, OUTPUT); 

  pinMode(IO1, OUTPUT); 

  pinMode(IO2, OUTPUT); 

  pinMode(IO3, OUTPUT); 

  pinMode(IO4, OUTPUT); 

  pinMode(IO5, OUTPUT); 

  pinMode(IO6, OUTPUT); 

  pinMode(IO7, OUTPUT); 

     

  pinMode(EEPROM_WE, OUTPUT);  

  pinMode(EEPROM_OE, OUTPUT); 

  digitalWrite(EEPROM_WE, HIGH); 

  digitalWrite(EEPROM_OE, HIGH); 

 

  if(codeDIP) { 

    for(uint8_t a = 0; a < 16; a++) { 

      code[2] = a + (0b0000 << 4);       //LOAD A      

      for(uint8_t b = 0; b < 8; b++) { 

        code[3] = b + (0b0100 << 4);     //SUBTRACT B 

         

        for(uint8_t addr = 0; addr < PROG_SIZE; addr++) { 

          codeWrite[addr] = code[addr]; 

        }    

        for(uint8_t addr = 0; addr < 16; addr++) { 

          writeEEPROM(addr + (b<<4) + (a<<7), codeWrite[addr]); 

          Serial.print(addr + (b<<4) + (a<<7)); 

          Serial.print("             ");  

          Serial.println(codeWrite[addr], BIN); 

        } 

      }         

    } 

  } 

   

  for(uint8_t addr = 0; addr < PROG_SIZE; addr++) { 

    codeWrite[addr] = code[addr]; 

  }    

  for(uint8_t addr = 0; addr < 16; addr++) { 

    writeEEPROM(addr + (operandB<<4) + (operandA<<7), codeWrite[addr]); 

    //Serial.print(addr + (operandB<<4) + (operandA<<7)); 

    //Serial.print("             ");  

    //Serial.println(codeWrite[addr], BIN); 

  } 

   

  Serial.println("Reading EEPROM"); 

  printContents(); 

} 

 

void writeEEPROM(uint16_t address, uint8_t data) { 

  digitalWrite(EEPROM_OE, LOW); 

  digitalWrite(EEPROM_WE, HIGH); 

  setAddress(address);  //Set the address 

  digitalWrite(EEPROM_OE, HIGH); 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

188 

 

 
  

  for (int pin = IO0; pin <= IO7; pin++) {. //prepare to write the data... 

    pinMode(pin, OUTPUT); 

  } 

  delay(10); 

  for (int pin = IO7; pin >= IO0; pin--) {  //write the data... 

    digitalWrite(pin, data & 0x80); 

    //    if (pin == EEPROM_D7 - 4) Serial.print(' '); 

    Serial.print(data & 0x80 ? HIGH : LOW); 

    data <<= 1;     //destructive.... 

  } 

  Serial.println(""); 

  delay(10); 

   

  digitalWrite(EEPROM_WE, LOW); 

  delayMicroseconds(100); 

  digitalWrite(EEPROM_WE, HIGH); 

  delay(10); 

} 

 

void setAddress(uint16_t address) { 

  digitalWrite(RCLK, LOW); 

  shiftOut(SER, SRCLK, MSBFIRST, address>>8); 

  shiftOut(SER, SRCLK, MSBFIRST, address); 

  digitalWrite(RCLK, HIGH); 

  delay(10); 

} 

 

byte readEEPROM(int address) { 

  digitalWrite(EEPROM_WE, HIGH); 

  for (int pin = IO7; pin >= IO0; pin--) { 

    pinMode(pin, INPUT); 

  } 

  byte value = 0; 

  setAddress(address); 

  digitalWrite(EEPROM_OE, LOW); 

  delayMicroseconds(1); 

  digitalWrite(EEPROM_OE, HIGH); 

  for (int pin = IO7; pin >= IO0; pin--) { 

    // if (debug) Serial.print(digitalRead(pin)); 

    value = (value << 1) + digitalRead(pin); 

  } 

  //  if (debug) Serial.print(" "); 

  return value; 

} 

 

void printContents() { 

  // Zero out the target for the reading of EEPROM just to be sure... 

  for (int address = 0; address < 16; address++) 

    codeRead[address] = 0; 

  for (int address = 0; address < 16; address++){ //Separate the reading from thedisplaying... 

 

    codeRead[address] = readEEPROM(address); 

    Serial.print(codeRead[address], HEX); 

    Serial.print(' '); 

  } 

} 

 

void updateShiftTo(uint16_t data) { 

  digitalWrite(RCLK, LOW); 

  shiftOut(SER, SRCLK, MSBFIRST, data); 

  shiftOut(SER, SRCLK, MSBFIRST, data); 

  digitalWrite(RCLK, HIGH); 

} 

 

void loop() {} 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

189 

 

To upload the control EEPROM codes, a sketch from my teacher Mr. D’Arcy was used. It is 

linked in the references. The problem with that code was that the control code for load constant 

was written as A8 rather than A9. This would have the effect of writing a value to the addresses 

shown on the mux to RAM. This messed with my custom code and took a bit of thinking to 

figure out the problem. Once changing it back to A8, the code worked well. 

 

Media 

YouTube video link: https://youtu.be/fg3poC2dT2o  

 

Reflection 

The CHUMP was a harrowing, painstaking and drawn out process combining software, 

hardware, planning and patience to the deepest levels of understanding and implementation. 

Throughout the build, I faced countless problems. For example, I faced a problem with the clock 

signal where one of the 555 timers was malfunctioning. After double-checking the whole circuit, 

the problem was found and the timer was replaced. Another was not properly checking the 

control EEPROM codes where I scratched my head for at least two hours as to why the RAM 

was not storing values correctly. Also there was the trouble of creating new Chumpanese code as 

the one in my last submission was not great. Finally, there was wiring. To make a long story 

short, I will make sure the wires are all the way in the breadboard. There were definitely some 

other smaller technical problems as well but I have forgotten most of them. All I know is that 

time certainly flies when trying to fix a problem. And, it doesn’t help when I get frustrated, 

especially with a looming deadline approaching plus other summatives from other classes plus 

the short ISP due next week. This leads into the non-technical problems I experienced. Before 

discussing those, I said in my last submission that I wanted to try and create manim animations. 

Now, I realize it was such an unimportant thing to do and with the work that has piled up, I never 

once thought about it. Maybe next time. Over the weekend though, I had to tell myself when to 

stop and to focus on the priorities. Once I immerse myself in a problem, even if it is not 

important or there are other workarounds available, I cannot let go of it until it is solved. This 

week has been trying to let go of that perfectionist thinking. An example would be trying to 

select different programs using the DIP switch. After working on it for a couple of hours, I 

painfully forced myself to stop to continue with the more important priority of making my video. 

And I do realize that this video was not the best one I’ve made and I hope that it is ok. The 

reason was because I focused more on my DER and CHUMP build. Also, I have trouble making 

unscripted videos since I usually make videos with a script with additional editing to the footage.  

  

https://youtu.be/fg3poC2dT2o


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

190 

 

The other problem I faced was not being diligent and careful enough. For example, not taking 

notes and understanding the CHUMP when the teacher talked about it in class. This had a huge 

consequence as I had to take additional time to understand it when building leading to rewiring 

my CHUMP several times. On the positive side, I realized my mistake and sought out to start my 

DER early and wire the CHUMP a week before the deadline. With it, I wired up the chump 

systematically and in steps while testing it every so often. This method worked but even so, I am 

still scrambling to get my DER submitted on a Saturday evening. This goes to show that the 

CHUMP is no joke and really is the hardest project submission so far. Even though I put in a lot 

of work, more work than any regular project, it fell short of my expectations and there are some 

aspects of the submission to be improved. But, it was a good experience to learn about the 

complex architecture that goes into creating a simple 4-bit computer. However, next time, I think 

I wish I could have put in less work as I have neglected a lot of other priorities. Also I find it 

funny is that it is harder for me to stop working on any problem than it is to abandon it. I hope 

the severity of this will change over time. Anyway, It's been a hectic week and will become even 

more as the ISPs are due next. I am not too sure what will happen. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

191 

 

Project 3.4 (ISP – Short): EEG and EMG Mind Control Headset 
 

 
 

Purpose 

The purpose of this chosen ISP was to explore the biomedical and neurological field of 

engineering through the creation of an electroencephalography (EEG) reader. This would also 

enable the user to “mind control” devices with the output of the reader.  

 

Theory 

The theory and basic rundown of the project are as follows. An EEG reader would pick up brain 

signals corresponding to certain activities and using those waves, certain devices can be 

controlled. The EEG reader consists of electrodes connected to the scalp and forehead, picking 

up signals, which would then be filtered and amplified through a variety of resistor-capacitor 

circuits, yielding a clean EEG signal. A microcontroller would then read these signals and 

transmit them wirelessly to a computer where a graph of the data would be displayed. To make 

sense of this data, a Fast Fourier Transform (FFT) algorithm is employed to convert a position-

time domain signal into a frequency domain, separating the different sine waves that correspond 

to brain activity. Using this data, the computer can send a signal to a device, controlling it 

through the data gathered from EEG. Since EEG is somewhat controllable, this would enable a 

form of limited mind control.  

 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

192 

 

The reality of this project turned out to be not as impressive. Currently, four electrodes are 

attached to the user’s head. It then transmits mainly Electromyography (EMG) data which is 

muscle activity and a little bit of EEG data. This data is then filtered and amplified through a 

PCB circuit and is outputted through a wired connection to a computer. The computer graphs this 

data and runs it through an FFT to scan for EEG signals. Certain waves like alpha waves can be 

easily detected and the EMG is noticeable and controllable through blinks, eye movement, 

eyebrow raises, and other muscle activities so it was planned to implement machine learning to 

classify each EMG reading so that the user can control devices using EMG. But, due to time 

constraints, this was not implemented.  

 

EEG and EMG 

The basis of the project lies in EEG which are 

waves that transmit brain activity. It is used in 

hospitals for anesthesia, detecting brain 

abnormalities, and assessing sleep. The best way 

to acquire brain activity is through invasive 

techniques where electrodes are placed directly on 

the brain, producing a very clear and detailed 

signal. Unfortunately, this is not feasible in many 

situations as invasive techniques require surgery 

and anesthetics so instead a non-invasive was 

implemented. This method comprises electrodes 

placed in certain locations around the brain, 

allowing an easy non-invasive alternative at the 

cost of a dampened and weak brain signal as they 

have to travel through the skull and skin. The 

locations of where to put the electrodes are based on the 10-20 system which is an internationally 

recognized method for placing electrodes to gather EEG data. It is called the 10-20 system due to 

the percentages of space that are left between each electrode. 

 

Each electrode on this system corresponds to a certain part of the brain responsible for a certain 

activity. They are labelled with letters identifying the parts of the brain along with a number of 

the letter z where odd numbers occupy the left side, even numbers occupy the right and the z 

letter is for the midline of the skull. For example, the pre-frontal cortex labelled Fp1 and Fp2 are 

responsible for personality, speech control and planning. The occipital lobe labelled O is 

primarily used for visual processing. These two areas are used in the EEG acquisition device.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

193 

 

The EEG gathered is in the form of sine waves 

and each part of the brain produces different 

magnitudes and frequencies of waves that can be 

detected albeit the magnitudes are in the orders of 

microvolts as the EEG must travel through the 

skull and skin. The most common types picked up 

in other EEG acquisition projects are beta, alpha, 

theta, delta, mu and gamma waves. Beta waves 

are characteristic of alertness or focus and are 

evident by 13-30 Hz waves while alpha waves are 

linked to relaxation and occur in the 8-14 Hz range. Theta and delta waves are similar since they 

measure drowsiness and have the most magnitude and occur in the 1-8 Hz range. The last wave, 

mu, measures motor neurons at rest where mu suppression suppresses these waves that also 

occur at the 8-13 Hz range. Each wave has more magnitude at certain locations in the 10-20 

system. For example, mu waves are the strongest at the central sections of the 10-20 system 

whereas alpha waves are detected near the occipital lobe. Since the occipital lobe deals with 

vision, closing one’s eyes leads to more prominent brain waves. Aside from different wave 

frequencies, there are other specific patterns in the waves that can show up such as pattern 

recognition triggering and intense visual processing.  

 

With the acquisition of EEG, there is EMG from facial muscles that corrupts EEG data called 

artifacts. Prominent examples include blinking, forehead, mouth and eye movement. These show 

up as deviations and dips in the signal. In a medical situation, these artifacts are problematic as 

they interfere with the delicate EEG signal and are usually filtered out through software. 

However, for hobbyists trying to use these signals to control devices, these can prove useful as 

they can easily be identified, controlled, and require fewer components for acquisition. This is 

why such signals are not filtered out in my EEG device. In spite of that, the project is both an 

EEG and EMG acquisition tool. Examples of each EMG artifact are shown in the media section. 

 

In the project, electrodes were only placed on the forehead where the two pre-frontal sections are 

and one placed on O2 which is the occipital region. With this setup, alpha waves can be 

noticeably detected which would have allowed a user to control a device using these waves. 

There is also a reference electrode placed behind the ear that reduces the noise generated by the 

body. Only four electrodes were placed because it dramatically reduces the EEG acquisition 

circuitry, software, and cost as putting all 12 electrodes in correspondence with the 10-20 system 

is not feasible. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

194 

 

Hardware 

 
 

References 

https://tinyurl.com/y24tdkpt  

https://tinyurl.com/y2db44h7  

 

Procedure 

Electrodes are one of the key components in 

getting EEG data since these brain signals are  

already heavily dampened from the skull. They 

help reduce the impedance from the skin to the 

circuit to keep the distortion to a minimum. There 

are two types of electrodes used, dry and wet. Dry 

electrodes are fitted with materials like clean 

metals that offer the least impedance but are still 

prone to faulty contact with the scalp. Such 

contact increases resistance that the signal must 

travel through which leads to a really messy and 

inaccurate recording. This is why good electrodes 

and electrode placement are crucial. Wet 

electrodes offer less impedance but are not 

reusable or need gel to help improve the signal.  

 

https://tinyurl.com/y24tdkpt
https://tinyurl.com/y2db44h7


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

195 

 

For this project, disposable wet electrodes were chosen because they were readily available and 

are known to produce better results. Since they are also sticky, the glue was taped over when 

attaching an electrode to the occipital region of the head as the vicinity contains hair. This hair 

does, unfortunately, hinder the connection so the reading is not the clearest. 

 

The electrodes can then be snapped onto electrode cables. The cables that were used were 

shielded to absorb and prevent the signal from the corruption of electrical activity through, 

unfortunately, these cables do not prevent signals generated from cable movement. At the end of 

the cable, the wire is routed into a DIN connector and since none were available or able to 

interface with my circuit, the cable had to be stripped and soldered to male pin headers. In total, 

four cables were needed, one for each electrode. 

 

These cables then plug into the amplifier and filter circuit. This circuit is absolutely necessary to 

achieve a good reading as it amplifies the EEG signals from microvolts to volts for a computer to 

pick up and also filters noise generated by components and other devices. This is especially 

important because the signal is being amplified.  

 

The circuit design that was chosen was based on general guidelines, forums, project websites, 

and my own experiments. In the end, the circuit consists of an instrumentation amplifier, a notch 

filter, an amplification stage, a sallen-key high and low pass filter, and then through a resistor 

divider circuit so that the ESP-32 microcontroller can read the values. The order written is the 

order of circuits that the signal passes through. Along these stages, there are also some simple 

RC high pass filters sprinkled around that only consist of a capacitor and resistor connected 

along the signal pathway and ground.  All this is powered through a 9V battery split into a dual-

rail power supply. 

 

The circuit involves a lot of op-amps or operational amplifiers so here is the basic working of 

them. Op-amps work as amplifiers of two signals or can output the sum or difference through 

external analog components of capacitors, inductors and resistors. They require positive and 

negative voltages to be supplied and they also have a few key properties. More information is 

provided in the references section. 

 

The first part of the circuit design is the 8-pin AD620 instrumentation amplifier which is 

basically a more professional differential amplifier. In essence, the instrumentation amplifier 

takes in two signals and outputs and amplifies the difference between them. With the AD620, a 

lot of the problems that occur with the three op-amp differential amplifier setup are reduced 

dramatically. So, its high performance regarding a high common-mode rejection ratio and low 

offset voltage and noise combined with a somewhat low cost makes this chip popular in both 

medical and hobbyist EEG devices. This performance is also due to the reference pin which 

takes in a reference electrode signal to get rid of the voltage offset produced by the body. More 

data is provided in the AD620 datasheet. The gain of the difference can also be set with resistors. 

In the project, there is a gain of around 150 set by a 330-ohm resistor spanning the gain pins. The 

equation for this gain is shown here: 

 

𝐺 =
49.4 𝑘Ω

𝑅
+ 1 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

196 

 

In the project, two AD620s are used, therefore, 

the EEG device can measure two channels. It  

takes in four inputs, two of which are from the 

same electrode and the other two are from 

different electrodes. The same electrode is placed 

on the Fp1 region in the 10-20 system and the two 

different electrodes are placed on the O2 and Fp2 

regions. Therefore, the first channel measures the 

brainwave difference between Fp1 and O2 for the 

acquisition of alpha waves and the second channel 

measures the signal difference between Fp1 and 

Fp2 mainly for EMG recordings. Right vs left thinking also have the potential to be detected 

with this electrode placement. Each AD620s reference pin is then connected to the single 

reference electrode placed behind the ear.  

 

Next is the notch filter that only filters out 60 Hz electrical signals, meaning sine waves 

corresponding to a frequency of 60 Hz are eliminated. This 60 Hz noise is prevalent everywhere 

with electronics and is especially frequent in hospitals where a lot of specialized electronic 

equipment is always on, so it is pivotal to include some sort of method for getting rid of it as it 

interferes heavily with the data. In really expensive EEG devices, the circuitry is complex and 

specialized software is used to further tone down the noise, but for this project, a simple notch 

filter does the job. The notch filter used is called a twin T notch filter and it consists of capacitors 

and resistors in RC pair formations.  

 

For a chosen frequency of 60 Hz, an R value of 6 Kohm and C value of 220 nF were chosen. In 

the circuit, 6 k and 12 k resistors were used along with a ceramic capacitor with the chosen C 

value of 220 nF. To get the value of 2C or 440 nF, two 220 nF capacitors were put in parallel to 

double the 220 nF. A simulation demonstration of the twin t notch filter filtering 60 Hz noise is 

shown as a link to a Falstad circuit. 

 

Other EEG devices typically use other types of notch filters, as none were found that used this 

circuit. So, it was decided upon to try it out due to its simplicity and test its effectiveness. 

Overall, it seemed to work well and caused no issues. 

 

The next major part of the circuit is the amplification stage used to amplify the brain signals. 

This next stage was chosen to be placed after the notch circuit so that the 60 Hz noise will not be 

amplified and the other noise present can be more effectively toned down with the high and low 

pass filters ahead. Plus, the notch filter reduces and varies the amplitude of the signal so placing 

the amplification circuit after keeps the signal at a constant level. The amplification stage is a 

standard op-amp amplifier that uses external resistors for a voltage divider. This divider is 

responsible for the amount of amplification so the resistor values give the formula for gain. 

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

197 

 

 

A gain of 330 and 485 was chosen for the first and second channel respectively. The difference 

of gain values was chosen because the EMG recorded on the second channel was too low in 

amplitude so the gain was adjusted for that channel only. To set the gain of 330, resistor values 

of 330 kohm for R1 and 1 kohm for R2 was used and to set the gain of 485, 330 kohm was also 

used for R2 but R2 was instead 680 ohms. It should also be noted that all op-amps used come 

from the LM324 14 pin quad op amp and the LM358 dual 8 pin op amp. 

 

Once amplified the signal passes through a high 

pass and low pass filter set to frequencies that 

capture the common EEG signal frequencies. The 

high pass filter was set to pass frequencies above 

0.5 Hz. Also, with the high pass filter, the signal 

apparently stays relatively close to the midpoint 

rather than vary its equation of axis which is 

important for analyzing EEG. The low pass filter 

was set to pass signals below 34 Hz. With both 

these filters, values set between 0.5 Hz and 34 Hz, 

which is the optimal range for EEG signals, were 

kept intact while those outside that range are attenuated and fall off to 0. Because of this, some 

other EEG projects forego the notch filter as the high and low pass filters mostly take care of the 

noise. But, it was decided to keep it in to further the chances of producing a clear signal. The 

types of high and low pass filters used are called Sallen-Key filters which are 2nd order filters 

based around an op-amp. 2nd order means that the attenuation cut-off slope is higher than a 

simple RC 1st order filter, decreasing the noise present more effectively.  

 

Values chosen for the filters are 1 uF non-polar capacitors and 1 megaohm and 100 kohm 

resistors for the high pass and 1 uF non-polar capacitors and 4.7 kohm resistors for the low pass. 

The equation to determine these frequencies of Sallen-key filters can be calculated using this 

formula:  

 

𝑓 =
1

2 ∗ 𝑅1 ∗ 𝐶1 ∗ 𝑅2 ∗ 𝐶2
 

 

In the project, the first channel contains a Sallen-key high and low pass filter while the second 

channel only contains the low pass filter.. This hardware choice was implemented because the 

high pass filter was not as important for acquiring data, especially if the second channel is mostly 

reserved for detecting EMG. Also, there was little room left to fit all the components on the PCB. 

To ompensate, both channels have passive RC high pass filters along the way set to pass 

frequencies above 0.15 Hz through resistor values of 1 megaohm and capacitance values of 1 uF. 

 

Finally, a voltage divider type configuration was used to scale down the voltage to a readable 

value under 3.3 volts so that the ESP32 can read it. This voltage configuration was found in a 

blog post and was experimented with and configured to reduce peaks of 9 volts to a maximum 

value of 3.3 volts with respect to 0 volts as the ground. A Falstad simulation of this is linked in 

the references section.   



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

198 

 

As mentioned before, the whole circuit is powered by a 9 volt battery. These 9 volts are split into 

9 volts, 4.5 volts and 0 through a voltage divider formed from two 100 kohm resistors and the 

4.5 volts is passed through an op-amp with a gain of 1. This is called a dual rail power supply 

because the 4.5 volts now acts as the ground so that the 9 volts and 0 volts are transformed to 4.5 

and -4.5 volts respectively. Therefore, all circuits that are connected ground are actually 

connected to 4.5 volts and the pins designated to VCC are connected to 9 volts and those 

designated to VEE are connected to 0 volts. This is one way of how negative voltage can be 

supplied to op-amps simply by using 4.5 volts as ground. 

 

Unfortunately, the 4.5 volts is not enough to power the ESP32 using the 5V pin as input and is 

too much to directly bypass the 3.3 voltage regulator. So, instead of using the 4.5 volts as ground 

and powering with the 9 volts, supplying a total of 4.5 volts, the ground for the ESP32 was 

chosen to be 0 volts and the power as 9 volts. In reference to the op-amp parts of the circuit, the 

ESP32 is grounded to a –4.5 volt signal and powered with a 4.5 signal. This brings in two 

different grounds and so there was a lot of caution involved in making sure that no reverse 

voltage or overvoltage was present on the ESP32. With those considerations in mind, the signals 

from the two channels are now ready to be read through software. 

 

Design 

 
  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

199 

 

The design aspect of the project was mainly about the PCB. The PCB was split into the two 

channels where the circuits of one channel were kept on the bottom while the other circuits for 

the second channel were kept on top. This reduced signal traces from crossing over from one 

channel to the other which may interfere with the delicate signal of EEG. A mix of SMT 

components and through hole were used for simplicity purposes as many specific resistors were 

needed. Since some were available already in through hole components, it was decided to just 

use them in the PCB.  

 

To solder the SMT components, a mix of hand soldering for the 1206 components and baking for 

the more detailed components like the ICs and the ESP32. Baking was a new experience and it 

involved putting solder paste on the pads either by hand or with a stencil and putting them in an 

oven like appliance that heats up the board and melts the solder. This method is quite simple, 

fail-safe and effective.  

 

Although the gathering of EEG and EMG is messy, complicated and still prone to inaccuracies, 

it is still impressive that a small degree of brain activity can be read and deciphered, especially 

since the brain is locked up behind high impedance skin and a thick skull. It is also a step 

towards more sophisticated brain computer interfaces for those who cannot communicate 

verbally or those who are paralyzed.  

 

Mathematics 

The mathematics behind EEG acquisition is very 

complex and involves some knowledge on 

calculus. The math mainly consists of the Discrete 

Fourier Transform (DFT) or the Fast Fourier 

Transform (FFT) which transforms a signal made 

up of sine waves of different magnitudes and 

frequencies into its frequency components. The 

FFT is widely used and is one of the most 

ingenious algorithms and has many applications 

in image, sound, and video processing along with 

others. The difference between the two is that the 

DFT is much slower than the FFT in terms of the 

time to complete the number of operations. The 

DFT has a quadratic running time function where as the number of inputs increases, the number 

of operations required increases quadratically. This is denoted by big 𝑂(𝑛2). The FFT on the 

other hand has 𝑂(𝑛 × log 𝑛), so as n gets very large, the scaling will almost be linear which is a 

huge improvement from a quadratic scaling. This is due to recursions of the function that reduce 

the matrix multiplication involved down to simpler matrices. In fact, in the processing sketches 

provided in the software sections, there is a DFT sketch and an FFT sketch both transforming the 

same signal in processing. However, as n increases, there is a noticeable increase in time 

difference between the two sketches.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

200 

 

To facilitate more understanding of the DFT and FFT, complex numbers need to be understood 

as these algorithms deal with them. Also, some knowledge on integrals helps. In the references 

section, there are a multitude of resources that helped me learn about the DFT and FFT.  

 

Media 

YouTube video link: https://youtu.be/Dr2lxEIa05U  

 

Software 

Here are all the sketches used in the project. The code on them is currently quite inefficient as 

readability and understanding was prioritized as that was needed when learning and 

implementing the FFT.  

ESP32 Serial 

 
  

// PROJECT  : ESP32 EEG Headset 

// PURPOSE  : Short ISP 

// COURSE   : ICS4U 

// AUTHOR   : Xander Chin 

// DATE     : Dec 4, 2021 

// MCU      : ESP32 

// STATUS   : Working 

// REFERENCE: 

 

#define EEGPIN1 34 

#define EEGPIN2 35 

 

String command; 

bool state; 

 

void setup() { 

  Serial.begin(115200); 

  Serial.setTimeout(1); 

  pinMode(4, OUTPUT); 

  pinMode(19, OUTPUT); 

} 

 

void loop() { 

  uint16_t sensorValue1 = analogRead(EEGPIN1); 

  uint16_t sensorValue2 = analogRead(EEGPIN2); 

  Serial.println(String(sensorValue1) + "," + String(sensorValue2)); 

 

  if(Serial.available()) { 

    command = Serial.readString(); 

    if(command.equals("blink")) state = !state; 

  } 

 

  digitalWrite(4, state); 

  digitalWrite(19, !state); 

} 

 
 

https://youtu.be/Dr2lxEIa05U


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

201 

 

Graphing EEG (Processing) 

 
 

import processing.serial.*; 

Serial myPort; 

 

byte rWidth = 5; 

String serialData = ""; 

int y1; 

int y2; 

 

int x = 0; 

int lastShift; 

int lastSample; 

 

int[] data1; 

int[] data2; 

float[] scaleData1; 

float[] realResult; 

float[] pixHeight; 

 

float[] window; 

float[] windowNone;        //array for no window 

float[] windowFlat;        //array for flat top window 

float a0 = 0.21557895;     //data for flat top window 

float a1 = 0.41663158; 

float a2 = 0.277263158; 

float a3 = 0.083578947; 

float a4 = 0.006947368; 

float[] windowHann;        //array for hanning window 

String windowLabel; 

 

int N = 512;       //number of samples of the FFT      

int sampleN = 0; 

boolean computeFFT = false; 

 

float[] frequencyBins;     //frequency outputs of the FFT 

Complex[] output;          // 

 

boolean blink = false;     //detect blinks 

int blinkCounter = 0; 

 

//can be swapped for 2D vector class 

//created for understandability 

class Complex { 

    float real;   // the real part 

    float img;    // the imaginary part 

 

    public Complex(float real, float img) { 

        this.real = real; 

        this.img = img; 

    } 

     

    public float real() { 

      return this.real(); 

    } 

     

    public float img() { 

      return this.img(); 

    } 

     

    void describe(){ 

      println( "" + this.real + " + " + this.img + "i" ); 

    } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

202 

 

 
  

 

void setup() { 

   

  String portName = Serial.list()[5];    //port corrsponding to esp32 serial port 

  //println(Serial.list()); 

  myPort = new Serial(this, portName, 115200); 

  myPort.bufferUntil('\n'); 

   

  size(1300, 800, P2D); 

  data1 = new int[width];      //define arrays 

  data2 = new int[width]; 

  scaleData1 = new float[N]; 

  realResult = new float[N]; 

  pixHeight = new float[scaleData1.length]; 

   

  frequencyBins = new float[10]; 

   

  window = new float[N]; 

  windowNone = new float[N]; 

  windowFlat = new float[N]; 

  windowHann = new float[N]; 

  for(int x = 0; x < N; x++) {    //calculate windows 

    windowNone[x] = 1; 

    windowFlat[x] = a0-a1*cos(2*PI*x/N)+a2*cos(4*PI*x/N)-a3*cos(6*PI*x/N)+a4*cos(8*PI*x/N); 

    windowHann[x] = 0.5*(1-cos(2*PI*x/N)); 

  } 

  window = windowNone; 

  windowLabel = "No window"; 

   

  rectMode(CORNERS); 

} 

 

void draw() { 

  background(0); 

   

  stroke(255); 

  //graph channel 1 data 

  for (int i = 1; i < data1.length; i++) { 

    line(width-i, height-data1[i], width-i+1, height-data1[i-1]); 

  } 

  //graph channel 2 data 

  for (int i = 1; i < data2.length; i++) { 

    line(width-i, height-data2[i], width-i+1, height-data2[i-1]); 

  } 

  //graph FFT of channel 1 

  for (int x = 0; x < pixHeight.length; x++) { 

    rect(x*10, height-pixHeight[x], (x+1)*10, height); 

  } 

  textSize(30); 

   

  //labels for current window and blink counter 

  text(windowLabel, 100, 50); 

  text("blink counter: " + str(blinkCounter), 100, 90); 

   

  //FFT calculations 

  if(computeFFT) { 

    Complex[] scaleSignalC = new Complex[scaleData1.length]; 

    for(int x = 0; x < scaleData1.length; x++) { 

      scaleSignalC[x] = new Complex(scaleData1[x]*window[x], 0);    //multiply by window 

    } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

203 

 

 
 

     

    Complex[] result = fft(scaleSignalC);    //calculate fft 

    for(int x = 0; x < scaleData1.length; x++) { 

      realResult[x] = sqrt(result[x].real*result[x].real + result[x].img*result[x].img);    

//turn complex number into real number (magnitude) 

      pixHeight[x] = map(realResult[x], min(realResult), max(realResult), 0, 5000);         

//determine rectangle heights 

      //println(str(x) + ": " + realResult[x]); 

    }     

    computeFFT = false; 

  } 

   

  //detects blinks 

  if(data1[0] > 400 && blink) { 

    blink = false; 

    myPort.write("blink"); 

    blinkCounter++; 

  } else if (data1[0] < 400) { 

    blink = true; 

  } 

} 

 

void serialEvent(Serial myPort) { 

  //This section needs to be first so that serialEvent is not disabled 

  serialData = myPort.readStringUntil('\n'); 

  serialData = serialData.substring(0, serialData.length() - 2); 

  int[] splitData = int(split(serialData, ",")); 

   

  //shift data every one millisecond 

  if(millis() - lastShift > 1) { 

    for(int i = data1.length-1; i > 0; i--) { 

      data1[i] = data1[i-1]; 

    } 

    for(int i = data2.length-1; i > 0; i--) { 

      data2[i] = data2[i-1]; 

    } 

    lastShift = millis(); 

  } 

   

  //map data to pixel heights for plottting 

  data1[0] = int(map(float(splitData[0]), 0, 4095, 50, 600)); 

  data2[0] = int(map(float(splitData[1]), 0, 4095, 300, 900)); 

   

  //calculate FFT every 1 ms 

  if(millis() - lastSample >= 1) {     

    scaleData1[sampleN] = map(float(splitData[0]), 0, 4095, 0, 10); 

    sampleN = (sampleN + 1) % N; 

    if(sampleN == N - 1) computeFFT = true; 

     

    lastSample = millis(); 

  } 

   

  //println(splitData[1]); 

  //println(serialData); 

} 

 

//use custom complex number class. returns complex number 

Complex[] fft(Complex[] data) { 

  int n = data.length;  

  if(n == 1) return data; 

   

  //divide into even and odd indexes 

  int halfN = n/2; 

  Complex[] even = new Complex[halfN]; 

  Complex[] odd = new Complex[halfN]; 

  for(int i = 0; i < halfN; i++) { 

    even[i] = data[i*2]; 

    odd[i] = data[i*2+1]; 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

204 

 

 
  

    

  //recursive 

  even = fft(even); 

  odd = fft(odd); 

   

  output = new Complex[n];    //initialize output 

   

  //after recursion - combine   

  for(int k = 0; k < halfN; k++) {    

    output[k] = new Complex(even[k].real + (odd[k].real*cos(2*PI*k/n) - 

odd[k].img*sin(2*PI*k/n)),  

                        even[k].img + (odd[k].real*sin(2*PI*k/n) + odd[k].img*cos(2*PI*k/n))); 

      

    output[k+n/2] = new Complex(even[k].real - (odd[k].real*cos(2*PI*k/n) - 

odd[k].img*sin(2*PI*k/n)),  

                            even[k].img - (odd[k].real*sin(2*PI*k/n) + 

odd[k].img*cos(2*PI*k/n))); 

  } 

  return output; 

} 

 

//unused but simpler than FFT 

//takes in data array data[] - data is an array vector 

//takes in N number of samples in data[] 

//will return frequency components array vector 

float[] dft(float[] data) { 

  int N = data.length; 

  int K = N/2;  

   

  for(int k = 0; k<K; k++) { 

    float realSum = 0; 

    float imaginarySum = 0; 

    for(int n = 0; n<N; n++) { 

      realSum += data[n] * cos((2*PI/N)*k*n); 

      imaginarySum += data[n] * sin((2*PI/N)*k*n); 

    } 

    //realSum = realSum*(1/N); 

    frequencyBins[k] = sqrt(realSum*realSum + imaginarySum*imaginarySum); 

  } 

  return frequencyBins; 

} 

 

void keyPressed() { 

  if(key == '1') { 

    window = windowHann; 

    windowLabel = "Hann window"; 

  } else if(key == '2') { 

    window = windowFlat; 

    windowLabel = "Flatop window"; 

  } else if(key == '0') {     

    window = windowNone; 

    windowLabel = "No window"; 

  } else if(key == 'C') { 

    blinkCounter = 0; 

  } 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

205 

 

Neural Network Sketch (Processing) 

 
 

 

//--------------for saving to files 

import java.io.BufferedWriter; 

import java.io.FileWriter; 

 

FileWriter fw; 

BufferedWriter bw; 

 

String fileName = "signalData.txt"; 

 

//--------------getting data from serial 

import processing.serial.*; 

 

Serial myPort; 

String serialData = ""; 

 

//-----------------other 

int[] data1;        //channel 1 data 

int[] data2;        //channel 2 data 

int lastShift; 

 

int mode = 0;       //0 = normal graphing 

                    //1 = put red line 

                    //2 = sort data 

int marker1 = 0;    //marker 1 to 2: buffer 

int marker2 = 0;    //marker 2 to 3: action 

int marker3 = 0;    //marker 3 to end: buffer 

int start;          //start of data to be saved 

int end;            //end of data to be saved 

String label = "nothing";       //classification of data 

int labelNum = 1;               //number classification (goes into training file) 

 

String[] savedData; 

String fileText; 

 

/* 

object classes 

 

network class 

 

  attributes 

  neuron - input, hidden, output layers  

 

  methods 

  respond() 

  train() 

 

neuron class 

 

  learning rate (for all neurons) 

   

  attributes 

   

  neuron inputs - place to store outputs from previous layer 

  output 

  weights 

  error (difference in desired and output) 

*/ 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

206 

 

 
  

 

void setup() { 

  //setup network (100 neurons, 50 hidden layers, 4 outputs) 

  //setup sigmoid data 

  // 

   

  size(1300, 800, P2D); 

   

  data1 = new int[width]; 

  data2 = new int[width]; 

  savedData = new String[101];    //extra 1 for classification name 

   

  String portName = Serial.list()[5]; 

  //println(Serial.list()); 

  myPort = new Serial(this, portName, 115200); 

  myPort.bufferUntil('\n'); 

   

   delay(1000); 

   

} 

 

void draw() { 

  /* 

  gather data  

    graph eeg signals onto screen 

    record button (or key) 

     

    if press record button 

      red line is marked on signal 

      perform blink/action 

      when record is pushed again, eeg signals stop 

      lines show up on eeg signals that mark 0 to 50 on each signal (ch1 and ch2)  //10ms for 

each point. 500ms in total  

      classify each highlighted area as one of the outputs (nothing, blink left, blink right, 

etc) use numpad 

      can delete recording if not good 

      can check through data collection by using arrow keys and seeing what segments are class

ified as 

      save to a training file  

  */ 

   

  //graph data 

    background(0); 

   

    stroke(255); 

     

    //graph channel 1 

    for (int i = 1; i < data1.length; i++) { 

      line(width-i, height-(data1[i]+50), width-i+1, height-(data1[i-1]+50)); 

    } 

    //graph channel 2 

    for (int i = 1; i < data2.length; i++) { 

      line(width-i, height-(data2[i]+400), width-i+1, height-(data2[i-1]+400)); 

    } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

207 

 

 

     

    if(mode != 0) { 

      stroke(255, 255, 0); 

      line(width-marker1, 100, width-marker1, 800); 

      stroke(0, 255, 0); 

      line(width-marker2, 100, width-marker2, 800); 

      stroke(255, 0, 0); 

      line(width-marker3, 100, width-marker3, 800); 

       

      if(mode == 2) { 

        stroke(255, 0, 255); 

        line(width-start, 100, width-start, 800);     

        line(width-end, 100, width-end, 800); 

         

        //text 

        textSize(50); 

        text(str(labelNum) + ": " + label, 30, 120);  

        fill(255); 

      } 

    } 

} 

 

void keyPressed() { 

  if(keyCode == ' ') { 

    mode = (mode + 1) % 3; 

    if(mode != 2) { 

      marker1 = 0; 

      marker2 = 0; 

      marker3 = 0; 

    } 

    //place red line in recording 

  } else if(keyCode == 't') { 

    //train model 

  } 

   

  if(mode == 2) { 

    if      (keyCode == '1') {label = "nothing"; labelNum = 1;} 

    else if (keyCode == '2') {label = "right blink"; labelNum = 2;} 

    else if (keyCode == '3') {label = "left blink"; labelNum = 3;} 

    else if (keyCode == '4') {label = "eye move right"; labelNum = 4;} 

    else if (keyCode == '5') {label = "eye move left"; labelNum = 5;} 

    else if (key == ENTER) { 

      savedData[100] = str(labelNum); 

      for(int x = 0; x < 50; x++) { 

        savedData[x] = str(data1[start-x*5]); 

        savedData[x+50] = str(data2[start-x*5]); 

      } 

      fileText = join(savedData, ","); 

      appendTextToFile(fileName, fileText); 

       

      start = start-5; 

      end = end-5; 

    } 

    else if(key == CODED) { 

      if(keyCode == LEFT) { 

        start = start+5; 

        end = end+5; 

      } 

      else if(keyCode == RIGHT) { 

        start = start-5; 

        end = end-5; 

      } 

    } 

     

    else if(keyCode == 'T') { 

      label = "training..."; 

      trainNetwork(); 

      label = "nothing"; 

      labelNum = 1; 

    } 

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

208 

 

 
  

   

   

  //if key pressed: 

    //load training data 

    //go train model 

  /* 

  training phase - train neural network with new data 

    load training file  

    train network with data (repeat for all data segments chosen in random order) 

      select random data segment 

      network responds to the data segment 

      network trains according to the data segment 

       modify and save weights of each neuron in the current network 

       

    other stuff 

      display how many are classified and how many in each classification 

      add reset button to reset all the neurons to random weights (reset to untrained network) 

  */ 

   

  /* 

  test data with incoming eeg signals (no back propagation) 

   

  network will respond to each 100 eeg segments for each of the channels (classifies type of s

ignal) 

  integrate with rest of eeg headset code 

   

  */ 

} 

 

void serialEvent(Serial myPort) { 

  //This section needs to be first so that serialEvent is not disabled 

  serialData = myPort.readStringUntil('\n'); 

  serialData = serialData.substring(0, serialData.length() - 2); 

  int[] splitData = int(split(serialData, ",")); 

   

  if(millis() - lastShift > 2) { 

    if(mode == 0 || mode == 1) { 

      for(int i = data1.length-1; i > 0; i--) { 

        data1[i] = data1[i-1]; 

      } 

      for(int i = data2.length-1; i > 0; i--) { 

        data2[i] = data2[i-1]; 

      } 

      lastShift = millis(); 

    } 

    if(mode == 1) { 

      marker1++; 

      if(marker1 >= 250) marker2++; 

      if(marker1 >= 500) marker3++; 

      if(marker1 >= 750) { 

        mode = 2; 

        start = marker1; 

        end = marker2; 

      } 

    } 

  }   

   

  //println(splitData[1]); 

   

  data1[0] = int(map(float(splitData[0]), 0, 4095, 0, 400)); 

  data2[0] = int(map(float(splitData[1]), 0, 4095, 0, 400)); 

   

  println(serialData); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

209 

 

 
  

void appendTextToFile(String filename, String text) { 

  File file = new File("/Users/student/Documents/Processing/NeuralNetwork/" + filename); 

  try { 

    FileWriter fw = new FileWriter(file, true);///true = append 

    BufferedWriter bw = new BufferedWriter(fw); 

    PrintWriter pw = new PrintWriter(bw); 

     

    pw.println(text); 

    pw.close(); 

  } catch (IOException e) { 

      e.printStackTrace(); 

  } 

} 

 

void trainNetwork() { 

   

} 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

210 

 

 

DFT Example 

 
 

 

 

float[] frequencyBins; 

float[] signal;    //over 1 second 

 

float[] testSignal = {1, 0, -1, 0, 1, 0, -1, 0}; 

 

int N = 2048; 

float freq1 = 41; 

float freq2 = 33; 

float sigPhase1 = 0; 

float sigPhase2 = 0; 

 

void setup() { 

  frequencyBins = new float[N]; 

  signal = new float[N]; 

  for(int x = 0; x < signal.length; x++) { 

    signal[x] = cos((2*PI/N)*freq1*x + sigPhase1) + cos((2*PI/N)*freq2*x + sigPhase2); 

  } 

} 

 

void draw() { 

  int start = millis(); 

  float[] result = dft(signal); 

  println(str(millis() - start) + " ms");    //print time it takes to compute 

   

  for(int x = 0; x < signal.length; x++) { 

    //println(str(x) + ": " + str(result[x])); 

  } 

   

  while(true); 

} 

 

//takes in data array data[] - data is an array vector 

//takes in N number of samples in data[] 

//will return frequency components array vector 

float[] dft(float[] data) { 

  int N = data.length; 

  int K = N/2; 

   

  for(int k = 0; k<N; k++) { 

    float realSum = 0; 

    float imaginarySum = 0; 

    for(int n = 0; n<N; n++) { 

      realSum += data[n] * cos((2*PI/N)*k*n); 

      imaginarySum += data[n] * sin((2*PI/N)*k*n); 

    } 

    //realSum = realSum*(1/N); 

    frequencyBins[k] = sqrt(realSum*realSum + imaginarySum*imaginarySum);    //combine complex 

number to real number 

  } 

  return frequencyBins; 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

211 

 

FFT Example 

 
 

//WORK ON ACCEPTING INPUTS THAT ARE NOT A POWER OF 2 

 

Complex[] output; 

 

float sampleTime = 0.1;    //in seconds 

float[] signal;     

Complex[] signalC; 

 

float[] realResult; 

float[] pixHeight; 

 

float[] testSignalF = {0, 10, 0, -10, 0, 10, 0, -10, 0, 10, 0, -10, 0, 10, 0, -10};  //signal 

gathered over sampleTime seconds 

Complex[] testSignalC; 

 

int N = 128;            //N must be a power of 2 

float freq1 = 41; 

float freq2 = 33; 

float sigPhase1 = 0; 

float sigPhase2 = 0; 

 

void setup() { 

  signal = new float[N];   

  signalC = new Complex[N]; 

  for(int x = 0; x < signal.length; x++) { 

    signal[x] = cos((2*PI/N)*freq1*x + sigPhase1) + cos((2*PI/N)*freq2*x + sigPhase2); 

    signalC[x] = new Complex(signal[x], 0); 

  } 

   

  float[] scaleSignal = new float[testSignalF.length]; 

  testSignalC = new Complex[testSignalF.length]; 

  for(int x = 0; x < testSignalF.length; x++) { 

    scaleSignal[x] = map(testSignalF[x], min(testSignalF), max(testSignalF), 0, 10);    

//scale to a factor of 10 

    testSignalC[x] = new Complex(scaleSignal[x], 0); 

  } 

   

  realResult = new float[N]; 

  pixHeight = new float[realResult.length]; 

   

  size(1300, 800, P2D); 

  rectMode(CORNERS); 

} 

 

void draw() { 

   background(0); 

   fill(255); 

   

  int start = millis(); 

  Complex[] result = fft(signalC); 

  println(str(millis() - start) + " ms"); 

   

  for(int x = 0; x < signalC.length; x++) { 

    //result[x].describe(); 

    realResult[x] = sqrt(result[x].real*result[x].real + result[x].img*result[x].img); 

    pixHeight[x] = map(realResult[x], min(realResult), max(realResult), 0, 300); 

    println(str(x/sampleTime) + " Hz: " + (1.0/testSignalF.length)*realResult[x]);    

  } 

   

  //graph result 

  for(int x = 0; x < pixHeight.length; x++) { 

    rect(x*10, height-pixHeight[x], (x+1)*10, height); 

    //println(pixHeight[x]); 

  }  

   



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

212 

 

 
 

 

 

  //while(true); 

} 

 

//use custom complex number class 

Complex[] fft(Complex[] data) { 

  int n = data.length;  

  if(n == 1) return data; 

   

  //divide into even and odd 

  int halfN = n/2; 

  Complex[] even = new Complex[halfN]; 

  Complex[] odd = new Complex[halfN]; 

  for(int i = 0; i < halfN; i++) { 

    even[i] = data[i*2]; 

    odd[i] = data[i*2+1]; 

  } 

    

  //recursive 

  even = fft(even); 

  odd = fft(odd); 

   

  output = new Complex[n];    //initialize output 

   

  //after recursion - combine   

  for(int k = 0; k < halfN; k++) {    

    output[k] = new Complex(even[k].real + (odd[k].real*cos(2*PI*k/n) - 

odd[k].img*sin(2*PI*k/n)),       //complex number multiplication 

                        even[k].img + (odd[k].real*sin(2*PI*k/n) + odd[k].img*cos(2*PI*k/n))); 

      

    output[k+n/2] = new Complex(even[k].real - (odd[k].real*cos(2*PI*k/n) - 

odd[k].img*sin(2*PI*k/n)),   //complex number multiplication 

                            even[k].img - (odd[k].real*sin(2*PI*k/n) + 

odd[k].img*cos(2*PI*k/n))); 

  } 

  return output; 

} 

 

//can be swapped for 2D vector class 

class Complex { 

    float real;   // the real part 

    float img;    // the imaginary part 

 

    public Complex(float real, float img) { 

        this.real = real; 

        this.img = img; 

    } 

     

    public float real() { 

      return this.real(); 

    } 

     

    public float img() { 

      return this.img(); 

    } 

     

    void describe(){ 

      println( "" + this.real + " + " + this.img + "i" ); 

    } 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

213 

 

FFT With Windowing 

 
 

//WORK ON ACCEPTING INPUTS THAT ARE NOT A POWER OF 2 

//currently only accepts number of samples that are a power of two 

 

Complex[] output; 

 

float sampleTime = 0.1;    //in seconds 

float[] signal;   

float[] signalWindowed; 

float[] windowF;            //flat top window 

float[] windowHann;         //hanning window 

 

//values needed for flat top window 

float a0 = 0.21557895; 

float a1 = 0.41663158; 

float a2 = 0.277263158; 

float a3 = 0.083578947; 

float a4 = 0.006947368; 

 

Complex[] signalC; 

 

float[] realResult; 

float[] pixHeight; 

 

float[] testSignalF = {0, 10, 0, -10, 0, 10, 0, -10, 0, 10, 0, -10, 0, 10, 0, -10};  //signal 

gathered over sampleTime seconds 

Complex[] testSignalC; 

 

int N = 256;            //N must be a power of 2 

float freq1 = 100; 

float freq2 = 33; 

float sigPhase1 = 0; 

float sigPhase2 = 0; 

 

void setup() { 

  signal = new float[N];   

  signalWindowed = new float[N]; 

  windowF = new float[N]; 

  windowHann = new float[N]; 

  signalC = new Complex[N];   

  for(int x = 0; x < signal.length; x++) { 

    signal[x] = cos((2*PI/(N+1))*freq1*x + sigPhase1) + cos((2*PI/(N+1))*freq2*x + sigPhase2); 

    windowF[x] = a0-a1*cos(2*PI*x/N)+a2*cos(4*PI*x/N)-a3*cos(6*PI*x/N)+a4*cos(8*PI*x/N); 

    windowHann[x] = 0.5*(1-cos(2*PI*x/N)); 

    //window[x] = 1; 

    signalWindowed[x] = signal[x]*windowHann[x]; 

    signalC[x] = new Complex(signalWindowed[x], 0); 

  } 

   

  float[] scaleSignal = new float[testSignalF.length]; 

  testSignalC = new Complex[testSignalF.length]; 

  for(int x = 0; x < testSignalF.length; x++) { 

    scaleSignal[x] = map(testSignalF[x], min(testSignalF), max(testSignalF), 0, 10);    

//scale to a factor of 10 

    testSignalC[x] = new Complex(scaleSignal[x], 0); 

  } 

   

  realResult = new float[N]; 

  pixHeight = new float[realResult.length]; 

   

  size(1300, 800, P2D); 

  rectMode(CORNERS); 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

214 

 

 
 

void draw() { 

   background(0); 

   fill(255); 

   

  int start = millis(); 

  Complex[] result = fft(signalC);        //calculate fft 

  println(str(millis() - start) + " ms"); 

   

  for(int x = 0; x < signalC.length; x++) { 

    //result[x].describe(); 

    realResult[x] = sqrt(result[x].real*result[x].real + result[x].img*result[x].img); 

    pixHeight[x] = map(realResult[x], min(realResult), max(realResult), 0, 300); 

    println(str(x/sampleTime) + " Hz: " + (1.0/testSignalF.length)*realResult[x]);    

  } 

   

  for(int x = 0; x < pixHeight.length; x++) { 

    rect(x*10, height-pixHeight[x], (x+1)*10, height); 

    //println(pixHeight[x]); 

  } 

   

  

   

   

  //while(true); 

} 

 

//use custom complex number class 

Complex[] fft(Complex[] data) { 

  int n = data.length;  

  if(n == 1) return data; 

   

  //divide into even and odd 

  int halfN = n/2; 

  Complex[] even = new Complex[halfN]; 

  Complex[] odd = new Complex[halfN]; 

  for(int i = 0; i < halfN; i++) { 

    even[i] = data[i*2]; 

    odd[i] = data[i*2+1]; 

  } 

    

  //recursive 

  even = fft(even); 

  odd = fft(odd); 

   

  output = new Complex[n];    //initialize output 

   

  //after recursion - combine   

  for(int k = 0; k < halfN; k++) {    

    output[k] = new Complex(even[k].real + (odd[k].real*cos(2*PI*k/n) - 

odd[k].img*sin(2*PI*k/n)),       //complex number multiplication 

                        even[k].img + (odd[k].real*sin(2*PI*k/n) + odd[k].img*cos(2*PI*k/n))); 

      

    output[k+n/2] = new Complex(even[k].real - (odd[k].real*cos(2*PI*k/n) - 

odd[k].img*sin(2*PI*k/n)),   //complex number multiplication 

                            even[k].img - (odd[k].real*sin(2*PI*k/n) + 

odd[k].img*cos(2*PI*k/n))); 

  } 

  return output; 

} 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

215 

 

 
 

Reflection 

There are many lessons I learned these past months. Firstly, write the most important parts of the 

DER first and then add detail later. I mistakenly added too much detail in the beginning, got 

burned out, and now I am skipping over detail on some of the sections such as the mathematics 

and design part. Secondly, do not be too ambitious. Unfortunately, this was the case when I first 

started and when I was halfway through and I paid a price for that as my presentation of my 

device did not go well and not much worked. However, with some miracles, I managed to get 

the  ISP working over the weekend. The price for this though was staying up until 4 am trying to 

write the rest of my DER and film my video which I am currently doing. Since it is this late (or 

early), I am going to go to submit what I have and go to bed, but I really do want to write more 

on the mathematics and design aspects as well as add in more pictures so I will do so tomorrow 

when I have more energy. I knew that this was going to be a late submission and I am sorry 

about that, so I decided to space things out and take breaks when needed so as not to get too 

stressed. Though writing this now I really do wish I could have finished earlier as I am really 

tired and do not have the mental energy to format everything properly. But overall, I am really 

pleased and grateful that this ISP managed to work out in the end as all the hard work I put over 

the last 3 months finally paid off and it lifted my mood from the presentation that did not go 

well. I will save my ambitions for the future when I have time to work more on this project.  

  

//can be swapped for 2D vector class 

class Complex { 

    float real;   // the real part 

    float img;    // the imaginary part 

 

    public Complex(float real, float img) { 

        this.real = real; 

        this.img = img; 

    } 

     

    public float real() { 

      return this.real(); 

    } 

     

    public float img() { 

      return this.img(); 

    } 

     

    void describe(){ 

      println( "" + this.real + " + " + this.img + "i" ); 

    } 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

216 

 

Project 3.5: Pin Change Interrupt 

Purpose 

The purpose of this circuit is to exploit the low level inbuilt external pin change interrupts of the 

ATmega328P to free up the CPU for other tasks. This is demonstrated through a wiring of a 

simple 3-digit numerical combination lock. 

 

References 

http://darcy.rsgc.on.ca/ACES/TEI4M/RegisterLevelOptimization/Interrupts.html#PinChange  

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-

Microcontrollers-ATmega328P_Datasheet.pdf 

 

Procedure 

To create the combination lock, a rotary encoder 

connects to an Arduino NANO which controls  

certain pin outputs to drive a 7-segment display 

through the help of the 4511 binary to 7-segment 

display IC used in the ICS2O Counting Circuit 

project. A bi-color LED indicates the state of the 

lock; red for closed and green for open. The 7-

segment display presents the number to select 

while a clockwise and counterclockwise turn 

increments and decrements the digit by 1 with a 

rollover to 0 and 9 respectively. To input the digit shown, the debounced rotary encoder button is 

pressed and after three digits have been selected, the bi-color turns green if the three numbers are 

correct and in the correct order, otherwise the bi-color led flashes red. To reset the digit 

selection, the other debounced button is pressed. 

 

All significant parts used have had extensive use 

in other projects, so a quick recap will be 

provided. The rotary encoder, last used in the 

ICS3U Medium ISP, the LiDAR measurement 

device, works through greycode counting, a 

system of counting used for mechanical devices. 

The layout is featured to the right where one turn 

results in the two output pins presenting both 

highs or lows.  

  

Parts Table 

Quantity Description 

1 Arduino NANO 

1 Rotary encoder + PCB 

1 Debounced Button PCB 

1 10 k fixed resistor 

1 4511 binary decimal decoder 

1 Common cathode 7-segment 

http://darcy.rsgc.on.ca/ACES/TEI4M/RegisterLevelOptimization/Interrupts.html#PinChange
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

217 

 

When turning the rotary encoder, the outputs will 

change state one after the other, forming 90 

degree phase shifted square waves. The 

orientation of the phase shift depends on the 

direction of the turn, therefore, by reading the two 

pins, the direction and number of turns can be 

calculated. Also, a push of the rotary encoder 

takes the digit shown as one of the digit inputs 

and an external push button resets all the input 

digits to 0. 

 

In order to sense and execute all these actions, the 

Arduino NANO uses interrupts, which is defined 

as a signal emitted by hardware or software to 

perform a process or set of instructions requiring 

immediate attention. The ATmega328P on the 

Arduino NANO comes with timer and external 

interrupts, but for this project only external 

interrupts are needed as the different software 

actions are triggered by external state changes. 

When these interrupts are called, these “actions”, 

known as interrupt service routines (ISRs) are 

carried out. This is where the incrementing, 

resetting and storing actions are called, however, ISRs are recommended to run as fast as 

possible, therefore no complex functions should be called directly in an ISR. Instead, a common 

strategy used in this project is to simply set a Boolean value in the ISR to let the CPU know 

through an if statement that a specific interrupt has been triggered.  

 

To trigger an external interrupt on the ATmega328P, a change of state on certain pins needs to be 

made. For more specific external interrupts such as INT0 and INT1 located on digital pins 2 and 

3, the interrupt can be set to trigger on falling, rising and changing edges. However, for regular 

pin change interrupts, specified as PCINT on each pin, they are triggered whenever a change in 

state occurs. On the ATmega328P, there are only 3 pin change interrupts linked to all the 

available I/O pins, one for each I/O port. In this project, PCIE2 is used which triggers when 

interrupt enabled pins on port D (digital pins 0 to 7) experience a state change. Therefore to read 

rotary encoder rotations, pin change interrupts are enabled on pins 4 and 5 which link to output 

pins A and B on the rotary encoder. This leaves pins 2 and 3 for INT0 and INT1 interrupts which 

are set to trigger on a rising edge from the two push buttons. Setting interrupts and ports require 

manipulation of bits inside certain ATmega328 registers which is shown in the code and 

datasheet.  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

218 

 

In this project, a turn increases or decreases by 1 the binary value sent from the Arduino NANO 

pins into the 4511 where the 4511 converts binary into the corresponding number presented on 

the 7-segment display. It does this by writing a value to port C of the ATmega328P. Since the 

port is a byte where each bit controls the state of a pin, writing a value to the port produces a 

binary value which can be read by the 4511. To set the pins for output, the DDR registers must 

be set where a 1 sets the is setting the corresponding pin to output and a 0 sets it to input. If set to 

input, the states present on the pin are read by reading the port through the PIN macro. This is 

used to read the states of the rotary encoder by equating a value to PIND where D stands for port 

D. If set to output, the pin can be low or high by setting the bits on the PORT macro to 0s or 1s. 

To output a binary value to the 4511, the low nibble in DDRC is set and PORTC is set to the 

digit value selected. Also, the two highest pins of port D are set to output through setting bits 6 

and 7 on DDRD high, enabling PORTD output control to toggle between red and green of the bi-

color LED, representing locked and unlocked respectively. 

 

To detect the direction of rotation of the rotary 

encoder, one can imagine a unit square with 

coordinates (0, 0) (0, 1) (1, 1) and (1, 0). These 

coordinates correspond to the output pin states of 

the rotary encoder when rotated a certain 

direction. Turning clockwise results in 

coordinates that correspond with traversing the 

unit square clockwise producing 01 and 11 with 

one turn and 10 and 00 in the other turn. Turning 

counterclockwise would produce a 10 and 11 for 

one of the turns and 01 and 00 for the other turn. By combining the coordinates into a nybble, 

unique numbers are generated for rotation directions, allowing it to be calculated. The high bits 

of the nibble represent the current pin states while the lower two are the previous states. So 1110 

and 0001 mark a counterclockwise turn and 1101 and 0010 mark a clockwise turn. If statements 

then check the numbers and execute a digit increase or decrease, though to maximize efficiency, 

a combination of bit manipulation and masking would be preferable. 

 

An emphasis on low level coding techniques through direct manipulation bits in a port increases 

speed and efficiency compared to relying on the high level Arduino functions. This is where 

high-level software distills down into the depths of low-level control of ATmega328P hardware. 

The code in this project uses no pinMode, digitalWrite, digitalRead and attachInterrupt 

functions. The code is also flexible, in that parameters can be changed in the #define statements 

with minimal rewriting for the program to work on different ports, pins , and even different AVR 

MCUs. For example, to change the passcode, one only needs to modify the array that stores the 

passcode.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

219 

 

Code 

 

// PROJECT  : Combination lock with rotary encoder 

// PURPOSE  : Exploit external and pin change interrupts 

// COURSE   : ICS4U 

// AUTHOR   : Xander Chin 

// DATE     : February 3, 2022 

// MCU      : ATmega328P 

// STATUS   : Working 

// REFERENCE: 

http://darcy.rsgc.on.ca/ACES/TEI4M/RegisterLevelOptimization/Interrupts.html#PinChange 

// MY VIDEO : youtube link... 

 

#include <Mega328P.h> 

 

#define EI0LOW       (0<<ISC01) | (0<<ISC00)    // INT0 trigger on LOW state 

#define EI0CHANGE    (0<<ISC01) | (1<<ISC00)    // INT0 trigger on state change 

#define EI0FALLING   (1<<ISC01) | (0<<ISC00)    // INT0 trigger on falling edge 

#define EI0RISING    (1<<ISC01) | (1<<ISC00)    // INT0 trigger on rising edge 

 

#define EI1LOW       (0<<ISC11) | (0<<ISC10)    // INT1 trigger on LOW state 

#define EI1CHANGE    (0<<ISC11) | (1<<ISC10)    // INT1 trigger on LOW state 

#define EI1FALLING   (1<<ISC11) | (0<<ISC10)    // INT1 trigger on LOW state 

#define EI1RISING    (1<<ISC11) | (1<<ISC10)    // INT1 trigger on LOW state 

 

#define PC2ENABLE (1<<PCIE2)      // pin change interrupts on Port D 

#define AENABLE   (1<<PCINT20)    // pin change interrupt on PD4 

#define BENABLE   (1<<PCINT21)    // pin change interrput on PD5 

#define PCFLAG    (1<<PCIF2)      // pin change flag 

 

#define READENC   PIND 

#define A         (1<<PD4)        // pin A rotary encoder 

#define B         (1<<PD5)        // pin B rotary encoder 

 

#define DDRDIGIT  DDRC            // 4511 ddr 

#define PORTDIGIT PORTC           // 4511 port 

 

#define DDRLED    DDRD            // bicolor led ddr 

#define PORTLED   PORTD           // bicolor led port 

#define RED       (1<<PD6)        // bicolor red led pin 

#define GREEN     (1<<PD7)        // bicolor green led pin 

#define LEDPINS   RED | GREEN     // bicolor led outputs 

 

#define NUMDIGITS 10                // max number size for 4511   

uint8_t digit = 0;                  // current digit shown on 7-segment 

volatile uint8_t digitPos = 0;      // current digit position of user input 

                  

volatile bool extInt0 = false;      // external button custom flag 

volatile bool extInt1 = false;      // rotary encoder button custom flag 

volatile bool changeInt = false;    // rotary encoder custom flag 

 

volatile uint8_t state = 0;         // rotary encoder current and previous states 

bool wrong;                         // incorrect code flag 

 

const uint8_t code[] = {3,1,4};     // correct password. edit to change password 

uint8_t codeInput[sizeof(code)];    // user input code 

 

void pinChangeSetup() { 

  PCICR |= PC2ENABLE;             // enable pin change interrupts on port D 

  PCMSK2 |= AENABLE | BENABLE;    // activate pin change interrupt on these pins 

  PCIFR |= PCFLAG;                // clear flag by setting it to 1 

} 

 

void extIntSetup() {  

  EICRA |= EI0FALLING | EI1FALLING;   // select the preferred 'edge sense'   

  EIMSK |= (1<<INT0) | (1<<INT1);     // enable the two external interrupts   

  EIFR |= (1<<INTF1) | (1<<INTF0);    // clear the two interrupt flags 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

220 

 

 

 

void displaySetup() { 

  DDRDIGIT |= 0x0F;   // set 4511 pins to output 

} 

 

void bicolorSetup() { 

  DDRLED |= LEDPINS;    // set led pins to output 

  PORTLED |= RED;       // turn on red      

  PORTLED &= ~GREEN;    // turn off green 

} 

 

void setup() { 

 

  SREG &= ~(1<<7);    //cli(); disable global interrupts 

   

  pinChangeSetup();   // prepare to read rotary encoder 

  extIntSetup();      // prepare INT0 and INT1 for use 

  displaySetup();     // setup ports for 4511 and 7-segment 

  bicolorSetup();     // setup ports for bicolor led 

  resetCodeInput();   // set code input to 0s 

  showDigit(digit);   // present a value to start 

   

  SREG |= (1<<7);     //sei(); enable global interrupts 

} 

 

void loop() { 

  if(changeInt) { 

    changeInt = false;                    //clear pin change flag 

    if(state == B1110 || state == B0001) { 

      digit--;                            //decrement current digit 

      digit = digit % (256 - NUMDIGITS);  //rollover at 0 

    } else if(state == B1101 || state == B0010) { 

      digit = (digit + 1) % NUMDIGITS;    //increment with rollover 

    } 

     

    //same as above but with XORs and modulus 

    //commented out due to inefficiency of modulus 

    /* 

    if(!((state^B1110) % 15)) { 

      digit--; 

      digit = digit % (256 - numDigits); 

    } 

    if(!((state^B1101) % 15)) { 

      digit = (digit + 1) % numDigits; 

    } 

    */ 

  } 

   

  if(extInt1) {              

    extInt1 = false;    //clear INT1 flag 

    blinkRed();         //notify user of their input 

         

    codeInput[digitPos] = digit;  //log digit in password input array 

    digitPos++;                   //increase password input index array 

     

    if(digitPos == sizeof(code)) {                  //if at max index   

      for(uint8_t x = 0; x < sizeof(code); x++) {   //loop through digits 

        if(codeInput[x] != code[x]) {               //check each digit 

          wrong = true;                             //set wrong flag 

        } 

        codeInput[x] = 0;   //clear password input in the process 

      } 

      digitPos = 0;         //reset password input index array for next use 

       

      wrong ? flashRed() : correct();   //check wrong flag 

      wrong = false;                    //clear wrong flag 

      digit = 0;                        //reset current digit to 0 

    }     

  } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

221 

 

 
  

   

  if(extInt0) { 

    extInt0 = false;    //set false 

    resetCodeInput();   //reset password input   

    scramble();         //7-segment scramble effect - notifies user of reset 

    digit = 0;          //set current digit to 0 

  } 

   

  showDigit(digit); //display digit 

} 

 

ISR(INT0_vect) { 

  extInt0 = true;   //set INT0 flag 

} 

 

 

ISR(INT1_vect) { 

  extInt1 = true;   //set INT1 flag 

} 

 

ISR(PCINT2_vect) { 

  state = (READENC & (A | B)) >> 2 | state >> 2;   //immediately read in case of change 

  changeInt = true;                                //set pin change flag 

} 

 

void showDigit(uint8_t d) { 

  PORTDIGIT = d;    //output binary on low nybble of port to 4511 

} 

 

void flashRed() { 

  for(uint8_t x = 0; x < 8; x++) { 

    PORTLED ^= RED;   //toggle between led states 

    delay(100);       //hold delay (use timers for non-blocking) 

  }   

} 

 

void blinkRed() { 

  PORTLED &= ~RED;   //led off 

  delay(100);        //hold 

  PORTLED |= RED;    //led on 

} 

 

void correct() { 

  PORTLED ^= LEDPINS;   //switch colors (to green) 

  delay(3000);          //hold for 3 seconds 

  PORTLED ^= LEDPINS;   //switch colors back (to red) 

} 

 

 

void scramble() { 

  for(uint8_t x = 0; x < 15; x++) {   //iterate through digits 

    digit = (digit + 1) % NUMDIGITS;  //increase + rollover 

    showDigit(digit);                 //display digit 

    delay(30);                        //short hold 

  } 

} 

 

void resetCodeInput() { 

  for(uint8_t x = 0; x < sizeof(code); x++) {   //run through all elements 

    codeInput[x] = 0;                           //set to 0 

  } 

  digitPos = 0;                                 //set password index to 0 

} 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

222 

 

Media 

  

The combination lock circuit 

 

The rotary encoder custom PCB with a 

debounce circuit designed by C. D’Arcy 

 

YouTube video link: https://youtu.be/nX0koJXdlao  

 

Reflection 

Although simple, I loved this project because it allowed me to delve deeper into the details, as 

opposed to others like my independent study projects that left me no time to do so. Details 

included replacing all high-level code with low-level code, modularizing it, and finding the best 

and most efficient way to read the rotary encoder. Although the last part was somewhat 

unsuccessful, I’m glad I took the time and effort to try as I gained insights into the binary outputs 

of rotary encoder pins and also enjoyed the process. This simple project also allowed me to put 

the necessary time into my video and DER while balancing workload from my other courses. 

Learning how to configure interrupts and normalizing low level port and register programming 

pays huge dividends as they will form the basis of my code from now on to greatly boost 

performance. It also opens up the door to more ATmega328P peripherals to maximize what the 

MCU can do in future projects. 

  

https://youtu.be/nX0koJXdlao


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

223 

 

Project 3.6: (ISP – Medium): Giant RGBW LED Matrix 

 
 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

224 

 

Purpose 

The purpose of this Independent Study Project is to explore interest in hardware, software and 

design concepts to create a working device. For my ISP, I chose to create a large 32  24 RGB 

LED matrix using 768 SK6812 Neopixel LEDs and ping pong balls as diffusers. This was 

inspired by Bitluni’s own V3 RGB LED wall.  

 

References 

Bitluni Ping Pong LED wall V3: https://youtu.be/EZEMK-C-nSo  

http://www.normandled.com/upload/201805/SK6812RGBX-XX%20Datasheet.pdf  

 

Procedure 

The project’s most defining part are the red green 

and blue (RGB) LEDs, specifically 768 of them to 

make a 24 ´ 36 matrix. By varying the brightness 

of these three fundamental colours, all colors of 

the visible light spectrum can be displayed. 

Creating colors using light is very different from 

creating colors using paint. Mixing light adds the 

two wavelengths together which is why white is 

formed with red green and blue leds come 

together while mixing paint subtracts the color wavelengths, producing a darker color when 

adding in more colors. 

  

 For pixels, they display light and therefore abide 

by the laws of additive wavelengths. This is  

where the name RGB comes from, an acronym 

for the three fundamental colors of light: red, 

green and blue. Another popular format is HSV or 

hue, saturation and value. Hue is quantitatively 

represented from 0 to 360 and includes the 

different colors of the visible spectrum. Saturation 

determines how “white” the color appears with 

values from 0 to 100 while value is the brightness 

level or how “black” the color looks which also 

has a range from 0 to 100. In this project, RGB 

values are the main format. 

  

  

Parts Table 

Quantity Description 

1 Arduino NANO 

1 Lincoiah 5V 60A pwr supply 

768 SK6812 RGBW LED 

96 LED PCB strips 

24 Right PCB connectors 

24 Left PCB connectors 

72 Middle PCB connectors 

* Male breakable headers 

* Female breakable headers 

* Shielded cable (for data lines) 

* Power cables + wires 

https://youtu.be/EZEMK-C-nSo
http://www.normandled.com/upload/201805/SK6812RGBX-XX%20Datasheet.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

225 

 

To produce different colors, one has to vary intensity or brightness of red green and blue, the 

most obvious way is to control the current or PWM duty cycle of each color component. 

However, as the number of LEDs increases, the amount of I/Os with PWM needed to control 

increases, therefore, addressable RGB LEDs were invented which drastically reduces the amount 

of control pins. Such LEDs have a tiny microcontroller built in to take in data signals and 

translate them into To write to these LEDs, common modern day communication protocols such 

as SPI are used, therefore needing a clock and data pin, but one of the most popular methods is 

the one-wire communication used in Adafruits neopixels. These RGB LEDs only use one pin 

and can be chained together by connecting their data out of the previous LED to the data in to the 

next LED to form large displays while the first LED in the chain connects to a microcontroller 

I/O. Popular Neopixels include WS2812, APA106 RGB LEDs and SK6812 RGBW LEDs which 

include an extra white LED. 

 

 
 

The microcontroller inside varies each LED brightness through 8-bit control, therefore one RGB 

LED requires 24 bits of information while an RGBW variant requires 32 bits. Sending these bits 

though one wire involves specific timings and since each are chained together, the bits are 

shifted down as they are generated. For each pixel, the 32 bits are separated into a green byte, red 

byte, blue byte and white byte from most significant to least, therefore, the highest significant 

green bit must be sent first and the lowest significant bit of the white byte is sent last. Sending 

low or high bits involves setting the data pin high then low for a certain amount of time. This 

sends the bits out but does not turn on the LEDs. To turn on these LED’s, a latch is needed which 

is generated through a low state for a certain amount of time. Each Neopixel variant has slightly 

different timings, but all are on the scale of nanoseconds. For example here are the timings to 

send out a high and low bit and a latch time for the SK6812 RGBW LEDs: 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

226 

 

However, many neopixel bit timings work with 

some general approximation as the values listed 

above are quite flexible. A popular method for 

timing approximation that works with most 

neopixels is to split up the timings of a single bit, 

which is around 1050 nanoseconds to send a 

single bit, into three stages of equal time, each 

being around 350 nanoseconds. In the first stage, the data pin is always high, no matter the bit, in 

the second stage, the bit being sent corresponds to the state of the the pin, and in the third stage, 

the data pin is low no matter the bit. This set of timing can therefore approximate bit timings of 

many types of neopixels. With different microcontrollers with different clock speeds, it is near 

impossible to achieve an exact 350 nanoseconds for each stage, but again, neopixels are quite 

flexible and timing can vary a little as long as it follows the three stage protocol mentioned 

above. For an ATmega328P running at 16 MHz, each clock cycle is 62.5 nanoseconds, therefore 

a good approximation of 350 nanoseconds is 6 clock cycles where 6  62.5 = 375 nanoseconds. 

Testing further reveals that 8 clock cycles or 500 nanoseconds does the trick as well, though any 

higher than that would turn low bits into high bits. On an ATtiny84 running on its 8 MHz 

internal clock, each clock cycle is 125 nanoseconds, so 3 or 4 clock cycles would be ideal. 

Between bits, the signal can surprisingly stay low for up to 80 nanoseconds, where afterward it 

latches and displays the written bits. 80 microseconds is around 1600 cycles for a 16 MHz or 800 

cycles on a 8 MHz latches them. It should be noted that any low state for more than this amount 

latches the LEDs, therefore, the maximum time between sending bits is less than 80 

microseconds, which limits the computations that can be made between sending bits.  

 

With these nanoscale timing requirements, the number of clock cycles of each instruction must 

be taken into account. Low level port manipulation was used where setting and clearing bits each 

takes two clock cycles. To set and clear specific bits, bit manipulation is involved which takes 

another two clock cycles, therefore, a delay of 2 clock cycles is needed to complete the 6 cycle 

stage. In between bits, others can be calculated and subsequently sent out, however as mentioned 

above, the computations must be done under 80 nanoseconds in order to avoid the LEDs from 

latching. It is also important to turn off global interrupts by clearing the highest bit in the SREG 

register since they disturb the crucial timings of the LEDs.  

 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

227 

 

With the ATmega and ATtiny chips, most ports contain a maximum of 8 pins and all 8 can be 

individually set or cleared through the aforementioned low level port command. Therefore, 8 

outputs can be controlled in parallel which reduces the amount of time it takes to send the signal 

by a factor of 8, greatly boosting performance with large setups. So, any Arduino with at least 

one full sized port can write bits to neopixels in parallel, for example the attiny84. In theory, the 

delays needed for timing can be replaced with other port commands which can allow for 16 or 24 

line parallel control if there were enough pins. This would be a great application for the Arduino 

Mega.  

 

Instead of delays, timers were also experimented with to control neopixels using ISRs. However, 

through testing, ISRs when called take a good amount of clock cycles to execute, therefore, they 

cannot be used to control neopixels. Instead, the pins connected to timers can be used to output 

the data, but this would forego the parallel output from a port. 

 

To extend use beyond the AVR microcontrollers, the ESP32 was looked at. It is much more 

powerful but does not have port registers. Instead it has many different peripherals, two in 

particular, the I2S sound and RMT remote control, are perfect for sending customized signals 

since they deal with sending and receiving different kinds of sound and IR signals. These two 

peripherals also include a parallel mode where signals can be sent out simultaneously. Plus, 

sending and buffering these signals is handled by a Direct Memory Access (DMA), requiring no 

CPU control. These features are used in the FastLED library. Since setting them up to write 

neopixels required a lot of complex manipulation, they were not used.  

 

To display images, a buffer containing all the 

color bits of each pixel is needed. Since there are 

768 pixels and each pixel contains 4 bytes of red, 

green, blue and white, a total of 3072 bytes are 

needed to display a still image. This is more than 

the available SRAM in an ATmega328P so flash 

or program memory containing 32 kilobytes of 

storage is used to keep these images. 

Unfortunately, storage in flash is read-only, data 

can only be written about 10,000 times, and 

certain in built functions are required to properly 

read bytes stored in program memory, but it is 

non-volatile so powering off the MCU does not erase its contents. If one wants to change data, 

SRAM must be used to create a buffer which limits the amount of pixels. This can be resolved 

by moving to an Arduino Mega or by using external memory such as an EEPROM or SD card.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

228 

 

The LED buffer is stored in an 8-bit 2D array where each row represents a set of 8 pixels 

connected to the port pins, each column is the color bit value in order of the correct output with 

green first and white last, and each byte element is the bit written to the port and subsequently its 

8 pins. This array is then read and sent out sequentially. To change a specific single pixel value 

with an RGB configuration to the configuration mentioned above, some complex bit writing is 

executed which unfortunately takes a few thousand clock cycles just to change one pixel to a 

specified color value. So, updating all 768 LEDs with this command would result in low 

performance which is under 30 frames. Many attempts were made to make this conversion more 

efficient but to no avail. 

 

A third option of controlling the LEDs is to calculate and send the bits, saving a lot of SRAM 

space as no buffer is needed. The downside is that it limits the matrix to only display patterns 

formed with for loops and math, so no elaborate pictures can be shown. Instead, this is a good 

way to generate all sorts of gradients such as a rainbow pattern and other custom ones. Also, 

parallel output control does not work as the extra bit math needed to translate rgb values into 

values to write to the port takes longer than 80 microseconds, which as mentioned previously 

would latch the LEDs and prevent any more data from being sent. So, only a serial output works 

(though the rest of the port pins can be connected to repeat the data sent out).  

 

To create a modular build, the PCBs were designed to fit with female to male connectors for easy 

configuration. Custom sizes can be made with LEDs arranged in strips of 8 with enough space 

for pingpong balls and connector boards that can route data signals in a variety of directions 

using jumper connectors. These connector boards were made for different parts of the wall. 

Large traces and ground planes are needed to facilitate large current draw needed by the LEDs. 

96 strips were manufactured for a total of 768 LEDs and they were arranged horizontally in a 24 

down by 4 across configuration. Each connector board holds the strips with female headers so 

120 of them were produced for 5 columns of 24 with each holding a strip. Boards were 

connected to each other through removable wires in female headers to connect power, ground 

and data signals. Such features allow for a user to create any sized matrix. The same principle of 

modularity was applied to smaller PCB strips to complement the large LED wall. These strips 

have a single base connector and a strip on top which like the other larger strips can be rotated to 

send data from the left or right. A case and diffuser with a grid for the smaller matrix was 

designed in fusion which fits an 8 by 8 array of pixels.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

229 

 

 
 

PCBs were created in EAGLE and panelized with the SparkFun ULP where they were sent to 

JLCPCB. The benefit of panelization is the reduced cost for more PCBs, but the panel has to be 

under 100 mm by 100 mm in order to pay the lowest amount. 

 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

230 

 

The PCBs of the large wall did not hold well by themselves and needed to be mounted to a 

support. A large wooden skeleton frame was planned and built. Each vertical strip contained a 

column of connectors and underneath, horizontal supporting boards were screwed together for 

better stability. A frame rather than a solid board made carrying and building the wall easier and 

cheaper though mounting the power supply was out of the question. To make sure that the frame 

was measured properly, a row of LEDs and connectors were soldered and assembled to check for 

squareness. Drilling the holes and then screwing the wood screws in to connect the wood 

supports was the ideal choice for no wood splits and easier securement. After building the frame, 

All 120 connectors were soldered and screwed onto the five vertical strips. The LED strips were 

plugged in as the connectors were mounted to assure that everything fit. Thick power lines were 

wired to terminal blocks and long data lines from the microcontroller to the connector board JST 

connector needed a shielded cable connection to prevent interference which messes up the 

delicate neopixel timing. 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

231 

 

Code 

Arduino Nano 

 
  

// PROJECT  : Control SK6812s with Arduino NANO 

// PURPOSE  : Medium ISP 

// COURSE   : ICS4U 

// AUTHOR   : Xander Chin 

// DATE     : Feburary 20, 2022 

// MCU      : ATmega328P 

// STATUS   : Working 

// REFERENCE: 

 

#define NUM_STRIPS 8 

#define NUM_LEDS_PER_STRIP 2 

#define NUM_LEDS (NUM_STRIPS*NUM_LEDS_PER_STRIP) 

 

#define PIXEL_PORT    PORTD 

#define PIXEL_DDR     DDRD 

#define PIXEL_PINS    255   //all 8 pins 

 

#define LATCH         1600 

#define T_BLOCK       7       //5 clock cycles jittery 

 

//columns -> bit number (g,r,b,w)(32 color bits per row = 32 real bytes) 

//storage problem 

 

uint8_t pixelData[60][32] = { 

//G7 G6 G5 G4 G3 G2 G1 G0 R7 R6 R5 R4 R3 R2 R1 R0 B7 B6 B5 B4 B3 B2 B1 B0 W7 W6 W5 W4 W3 W2 W1 

W0 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //1st pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //2nd pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //3rd pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //4th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //5th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //6th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //7th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //8th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //9th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //10th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //11th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //12th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //13th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //14th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  },   //15th pixel 

  { 0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0  }    //16th pixel 

}; 

 

const uint8_t nyan1[96][32] PROGMEM = {   

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,0,0,0,0,0,0,0,0}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,0,0,0,0,0,0,0,0}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,16}, 

{44,9,8,12,45,40,8,12,14,78,78,78,14,78,78,78,97,96,96,97,64,97,96,96,16,0,0,16,16,0,0,16}, 

{12,9,8,12,13,8,8,12,14,14,14,14,14,14,14,14,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{0,1,60,60,61,60,60,0,0,60,60,60,0,0,0,0,1,0,0,1,0,1,0,0,60,0,0,0,60,60,60,60}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,1,66,66,67,66,66,0,4,126,126,126,60,4,60,4,5,56,56,61,56,5,56,4,122,0,0,0,66,122,66,122}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

232 

 

 

{0,129,66,66,195,66,66,0,32,126,126,126,60,32,60,32,161,28,28,189,28,161,28,32,94,0,0,0,66,94,

66,94}, 

{0,129,66,66,195,66,66,0,8,126,126,126,60,8,60,8,137,52,52,189,52,137,52,8,118,0,0,0,66,118,66

,118}, 

{0,129,66,66,195,66,66,0,16,126,126,126,60,16,60,16,145,44,44,189,44,145,44,16,110,0,0,0,66,11

0,66,110}, 

{0,129,66,66,195,66,66,0,0,78,78,78,12,0,12,0,129,12,12,141,12,129,12,0,78,0,0,0,66,78,66,78}, 

{0,129,66,66,195,66,66,0,0,70,70,70,4,0,4,0,129,4,4,133,4,129,4,0,118,0,0,48,114,70,66,118}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,62,0,0,56,26,6,2,62}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,126,0,0,120,90,6,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,126,0,0,120,122,6,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,118,0,0,112,114,6,2,118}, 

{0,1,2,2,3,2,2,0,0,14,14,14,12,0,12,0,1,12,12,13,12,1,12,0,126,0,0,112,114,14,2,126}, 

{0,129,2,2,131,2,2,0,0,14,14,14,12,0,12,0,129,12,12,141,12,129,12,0,126,0,0,112,114,14,2,126}, 

{0,129,2,2,131,2,2,0,0,14,14,14,12,0,12,0,129,12,12,141,12,129,12,0,126,0,0,112,114,14,2,126}, 

{0,1,12,12,13,12,12,0,0,12,12,12,0,0,0,0,1,0,0,1,0,1,0,0,124,0,0,112,124,12,12,124}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,112,0,0,112,112,0,0,112}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,32,32,0,32,32,32,0,135,0,0,135,0,135,32,0,56,0,0,56,24,0,0,56}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,195,0,0,195,0,0,0,0,32,32,0,32,32,32,0,195,0,0,195,0,195,32,0,56,0,0,56,24,0,0,56}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,40,0,0,40,40,0,0,40}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,24,16,16,24,24,16,16,24}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,56,0,0,56,56,0,0,56}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,54,0,0,48,54,6,6,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,22,0,0,16,18,6,2,22}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,0,0,129,0,0,0,4,6,6,6,6,4,6,4,133,2,2,135,2,133,2,4,50,0,0,48,48,2,0,50}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,14,0,0,8,8,6,0,14}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,62,16,16,56,56,22,16,62}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,54,0,0,48,48,6,0,54}, 

{0,129,0,0,129,0,0,0,0,14,14,14,14,0,14,0,129,14,14,143,14,129,14,0,14,0,0,0,0,14,0,14}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,32,62,62,62,62,32,62,32,161,30,30,191,30,161,30,32,30,0,0,0,0,30,0,30}, 

{0,129,2,2,131,2,2,0,16,62,62,62,60,16,60,16,145,44,44,189,44,145,44,16,46,0,0,0,2,46,2,46}, 

{0,129,34,34,163,34,34,0,0,62,62,62,28,0,28,0,129,28,28,157,28,129,28,0,62,0,0,0,34,62,34,62}, 

{0,129,62,62,191,62,62,0,0,62,62,62,0,0,0,0,129,0,0,129,0,129,0,0,126,0,0,64,126,62,62,126}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,64,0,0,64,64,0,0,64}, 

{44,137,8,12,173,40,8,12,14,14,14,14,14,14,14,14,161,32,32,161,0,161,32,32,80,0,0,80,80,0,0,80

}, 

{36,129,0,4,165,32,0,4,6,6,6,6,6,6,6,6,161,32,32,161,0,161,32,32,16,0,0,16,16,0,0,16}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,0,0,0,0,0,0,0,0}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,8,0,0,8,8,0,0,8}, 

{52,145,16,20,181,48,16,20,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,8,0,0,8,8,0,0,8}, 

{22,196,4,6,214,20,4,6,7,39,39,39,7,39,39,39,240,48,48,240,32,240,48,48,0,0,0,0,0,0,0,0}, 

{22,196,4,6,214,20,4,6,7,39,39,39,7,39,39,39,240,48,48,240,32,240,48,48,8,0,0,8,8,0,0,8}, 

{6,196,4,6,198,4,4,6,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,8,0,0,8,8,0,0,8}, 

{6,132,4,6,134,4,4,6,7,39,39,39,7,39,39,39,160,32,32,160,32,160,32,32,0,0,0,0,0,0,0,0}, 

{36,129,0,4,165,32,0,4,6,6,6,6,6,6,6,6,161,32,32,161,0,161,32,32,64,0,0,64,64,0,0,64}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,64,0,0,64,64,0,0,64}, 

{0,129,62,62,191,62,62,0,0,62,62,62,0,0,0,0,129,0,0,129,0,129,0,0,62,0,0,0,62,62,62,62}, 

{0,128,34,34,162,34,34,0,0,62,62,62,28,0,28,0,128,28,28,156,28,128,28,0,62,0,0,0,34,62,34,62}, 

{0,128,32,32,160,32,32,0,0,126,126,126,30,64,94,64,192,94,94,222,94,192,94,64,62,0,0,0,32,62,3

2,62}, 

{0,128,0,0,128,0,0,0,0,62,62,62,62,0,62,0,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,128,0,0,128,0,0,0,8,62,62,62,62,8,62,8,136,54,54,190,54,136,54,8,118,0,0,64,64,54,0,118}, 

{0,128,0,0,128,0,0,0,0,62,62,62,62,0,62,0,128,62,62,190,62,128,62,0,126,0,0,64,64,62,0,126}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

233 

 

 

{0,128,0,0,128,0,0,0,0,62,62,62,62,0,62,0,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,192,0,0,192,0,0,0,0,62,62,62,62,0,62,0,192,62,62,254,62,192,62,0,62,0,0,0,0,62,0,62}, 

{0,192,0,0,192,0,0,0,2,62,62,62,62,2,62,2,194,60,60,254,60,194,60,2,60,0,0,0,0,60,0,60}, 

{0,192,0,0,192,0,0,0,0,46,46,46,46,0,46,0,192,46,46,238,46,192,46,0,46,0,0,0,0,46,0,46}, 

{0,192,0,0,192,0,0,0,0,2,2,2,2,0,2,0,192,2,2,194,2,192,2,0,18,0,0,16,16,2,0,18}, 

{0,192,0,0,192,0,0,0,2,2,2,2,2,2,2,2,194,0,0,194,0,194,0,2,60,0,0,60,60,0,0,60}, 

{0,128,0,0,128,0,0,0,0,2,2,2,2,0,2,0,128,2,2,130,2,128,2,0,62,0,0,60,60,2,0,62}, 

{0,128,0,0,128,0,0,0,0,2,2,2,2,0,2,0,128,2,2,130,2,128,2,0,106,0,0,104,104,2,0,106}, 

{0,128,0,0,128,0,0,0,0,6,6,6,6,0,6,0,128,6,6,134,6,128,6,0,78,0,0,72,72,6,0,78}, 

{0,128,0,0,128,0,0,0,0,6,6,6,6,0,6,0,128,6,6,134,6,128,6,0,30,0,0,24,24,6,0,30}, 

{0,192,0,0,192,0,0,0,0,6,6,6,6,0,6,0,192,6,6,198,6,192,6,0,30,0,0,24,24,6,0,30}, 

{0,128,2,2,130,2,2,0,0,6,6,6,4,0,4,0,128,4,4,132,4,128,4,0,30,0,0,24,26,6,2,30}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,78,0,0,72,78,6,6,78}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,88,0,0,88,88,0,0,88}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,8,0,0,8,8,0,0,8}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,44,0,0,44,44,0,0,44}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,60,0,0,60,60,0,0,60}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,16,0,0,16,16,0,0,16}, 

{0,239,0,0,239,0,0,0,0,0,0,0,0,0,0,0,239,0,0,239,0,239,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0} 

}; 

 

const uint8_t nyan2[96][32] PROGMEM { 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,0,0,0,0,0,0,0,0}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{12,9,8,12,13,8,8,12,14,78,78,78,14,78,78,78,65,64,64,65,64,65,64,64,0,0,0,0,0,0,0,0}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{0,1,60,60,61,60,60,0,0,60,60,60,0,0,0,0,1,0,0,1,0,1,0,0,60,0,0,0,60,60,60,60}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,4,126,126,126,60,4,60,4,133,56,56,189,56,133,56,4,122,0,0,0,66,122,66

,122}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,66,66,67,66,66,0,32,126,126,126,60,32,60,32,33,28,28,61,28,33,28,32,94,0,0,0,66,94,66,94}

, 

{0,129,66,66,195,66,66,0,8,126,126,126,60,8,60,8,137,52,52,189,52,137,52,8,118,0,0,0,66,118,66

,118}, 

{0,129,66,66,195,66,66,0,16,126,126,126,60,16,60,16,145,44,44,189,44,145,44,16,110,0,0,0,66,11

0,66,110}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,0,78,78,78,12,0,12,0,129,12,12,141,12,129,12,0,78,0,0,0,66,78,66,78}, 

{0,129,66,66,195,66,66,0,0,70,70,70,4,0,4,0,129,4,4,133,4,129,4,0,118,0,0,48,114,70,66,118}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,62,0,0,56,26,6,2,62}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,126,0,0,120,90,6,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,126,0,0,120,122,6,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,118,0,0,112,114,6,2,118}, 

{0,1,2,2,3,2,2,0,0,14,14,14,12,0,12,0,1,12,12,13,12,1,12,0,126,0,0,112,114,14,2,126}, 

{0,129,2,2,131,2,2,0,0,14,14,14,12,0,12,0,129,12,12,141,12,129,12,0,126,0,0,112,114,14,2,126}, 

{0,129,12,12,141,12,12,0,0,12,12,12,0,0,0,0,129,0,0,129,0,129,0,0,124,0,0,112,124,12,12,124}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,112,0,0,112,112,0,0,112}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,112,0,0,112,112,0,0,112}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,32,32,0,32,32,32,0,135,0,0,135,0,135,32,0,56,0,0,56,24,0,0,56}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,195,0,0,195,0,0,0,0,32,32,0,32,32,32,0,195,0,0,195,0,195,32,0,56,0,0,56,24,0,0,56}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,40,0,0,40,40,0,0,40}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,24,16,16,24,24,16,16,24}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

234 

 

 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,56,0,0,56,56,0,0,56}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,48,0,0,48,48,0,0,48}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,22,0,0,16,22,6,6,22}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,0,0,129,0,0,0,4,6,6,6,6,4,6,4,133,2,2,135,2,133,2,4,10,0,0,8,8,2,0,10}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,62,16,16,56,56,22,16,62}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,54,0,0,48,48,6,0,54}, 

{0,129,0,0,129,0,0,0,0,14,14,14,14,0,14,0,129,14,14,143,14,129,14,0,14,0,0,0,0,14,0,14}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,32,62,62,62,62,32,62,32,161,30,30,191,30,161,30,32,30,0,0,0,0,30,0,30}, 

{0,129,2,2,131,2,2,0,16,62,62,62,60,16,60,16,145,44,44,189,44,145,44,16,46,0,0,0,2,46,2,46}, 

{0,129,34,34,163,34,34,0,0,62,62,62,28,0,28,0,129,28,28,157,28,129,28,0,62,0,0,0,34,62,34,62}, 

{0,129,62,62,191,62,62,0,0,62,62,62,0,0,0,0,129,0,0,129,0,129,0,0,126,0,0,64,126,62,62,126}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,64,0,0,64,64,0,0,64}, 

{44,137,8,12,173,40,8,12,14,14,14,14,14,14,14,14,161,32,32,161,0,161,32,32,16,0,0,16,16,0,0,16

}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,16}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,0,0,0,0,0,0,0,0}, 

{22,196,4,6,214,20,4,6,7,39,39,39,7,39,39,39,240,48,48,240,32,240,48,48,8,0,0,8,8,0,0,8}, 

{6,196,4,6,198,4,4,6,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,8,0,0,8,8,0,0,8}, 

{6,196,4,6,198,4,4,6,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,0,0,0,0,0,0,0,0}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,14,14,14,14,14,14,14,161,32,32,161,0,161,32,32,16,0,0,16,16,0,0,16

}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,64,0,0,64,64,0,0,64}, 

{0,129,62,62,191,62,62,0,0,62,62,62,0,0,0,0,129,0,0,129,0,129,0,0,126,0,0,64,126,62,62,126}, 

{0,128,34,34,162,34,34,0,0,62,62,62,28,0,28,0,128,28,28,156,28,128,28,0,62,0,0,0,34,62,34,62}, 

{0,192,32,32,224,32,32,0,0,62,62,62,30,0,30,0,192,30,30,222,30,192,30,0,62,0,0,0,32,62,32,62}, 

{0,128,0,0,128,0,0,0,0,62,62,62,62,0,62,0,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,128,0,0,128,0,0,0,8,62,62,62,62,8,62,8,136,54,54,190,54,136,54,8,118,0,0,64,64,54,0,118}, 

{0,128,0,0,128,0,0,0,0,62,62,62,62,0,62,0,128,62,62,190,62,128,62,0,126,0,0,64,64,62,0,126}, 

{0,128,0,0,128,0,0,0,0,62,62,62,62,0,62,0,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,192,0,0,192,0,0,0,0,62,62,62,62,0,62,0,192,62,62,254,62,192,62,0,62,0,0,0,0,62,0,62}, 

{0,192,0,0,192,0,0,0,2,62,62,62,62,2,62,2,194,60,60,254,60,194,60,2,60,0,0,0,0,60,0,60}, 

{0,192,0,0,192,0,0,0,0,62,62,62,62,0,62,0,192,62,62,254,62,192,62,0,62,0,0,0,0,62,0,62}, 

{0,192,0,0,192,0,0,0,0,46,46,46,46,0,46,0,192,46,46,238,46,192,46,0,46,0,0,0,0,46,0,46}, 

{0,192,0,0,192,0,0,0,2,2,2,2,2,2,2,2,194,0,0,194,0,194,0,2,16,0,0,16,16,0,0,16}, 

{0,192,0,0,192,0,0,0,0,2,2,2,2,0,2,0,192,2,2,194,2,192,2,0,62,0,0,60,60,2,0,62}, 

{0,128,0,0,128,0,0,0,0,2,2,2,2,0,2,0,128,2,2,130,2,128,2,0,62,0,0,60,60,2,0,62}, 

{0,128,0,0,128,0,0,0,0,2,2,2,2,0,2,0,128,2,2,130,2,128,2,0,106,0,0,104,104,2,0,106}, 

{0,128,0,0,128,0,0,0,0,6,6,6,6,0,6,0,128,6,6,134,6,128,6,0,78,0,0,72,72,6,0,78}, 

{0,128,0,0,128,0,0,0,0,6,6,6,6,0,6,0,128,6,6,134,6,128,6,0,30,0,0,24,24,6,0,30}, 

{0,192,2,2,194,2,2,0,0,6,6,6,4,0,4,0,192,4,4,196,4,192,4,0,30,0,0,24,26,6,2,30}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,30,0,0,24,30,6,6,30}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,72,0,0,72,72,0,0,72}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,88,0,0,88,88,0,0,88}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,8,0,0,8,8,0,0,8}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,44,0,0,44,44,0,0,44}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,60,0,0,60,60,0,0,60}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,16,0,0,16,16,0,0,16}, 

{0,239,0,0,239,0,0,0,0,0,0,0,0,0,0,0,239,0,0,239,0,239,0,0,0,0,0,0,0,0,0,0,} 

}; 

 

const uint8_t nyan3[96][32] PROGMEM = { 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}

, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

235 

 

 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{0,1,124,124,125,124,124,0,2,126,126,126,2,2,2,2,1,0,0,1,0,1,0,0,252,0,0,128,252,124,124,252}, 

{0,1,68,68,69,68,68,0,0,124,124,124,56,0,56,0,1,56,56,57,56,1,56,0,252,0,0,128,196,124,68,252}

, 

{0,1,64,64,65,64,64,0,0,124,124,124,60,0,60,0,1,60,60,61,60,1,60,0,124,0,0,0,64,124,64,124}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,1,0,0,1,0,0,0,16,124,124,124,124,16,124,16,17,108,108,125,108,17,108,16,108,0,0,0,0,108,0,1

08}, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,252,0,0,128,128,124,0,252

}, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,252,0,0,128,128,124,0,252

}, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,124,0,0,0,0,124,0,124}, 

{0,129,0,0,129,0,0,0,4,124,124,124,124,4,124,4,133,120,120,253,120,133,120,4,120,0,0,0,0,120,0

,120}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,0,92,92,92,92,0,92,0,129,92,92,221,92,129,92,0,92,0,0,0,0,92,0,92}, 

{0,129,0,0,129,0,0,0,4,4,4,4,4,4,4,4,133,0,0,133,0,133,0,4,32,0,0,32,32,0,0,32}, 

{0,129,0,0,129,0,0,0,0,4,4,4,4,0,4,0,129,4,4,133,4,129,4,0,124,0,0,120,120,4,0,124}, 

{0,129,0,0,129,0,0,0,0,4,4,4,4,0,4,0,129,4,4,133,4,129,4,0,124,0,0,120,120,4,0,124}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,84,0,0,80,80,4,0,84}, 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,156,0,0,144,144,12,0,156}, 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,188,0,0,176,176,12,0,188}, 

{0,1,4,4,5,4,4,0,0,12,12,12,8,0,8,0,1,8,8,9,8,1,8,0,60,0,0,48,52,12,4,60}, 

{0,131,12,12,143,12,12,0,0,12,12,12,0,0,0,0,131,0,0,131,0,131,0,0,60,0,0,48,60,12,12,60}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,16,0,0,16,16,0,0,16}, 

{0,15,0,0,15,0,0,0,0,0,0,0,0,0,0,0,15,0,0,15,0,15,0,0,176,0,0,176,176,0,0,176}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,144,0,0,144,144,0,0,144}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,88,0,0,88,88,0,0,88}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,32,0,0,32,32,0,0,32}, 

{0,223,0,0,223,0,0,0,0,0,0,0,0,0,0,0,223,0,0,223,0,223,0,0,0,0,0,0,0,0,0,0}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,135,0,0,135,0,0,0,0,32,32,0,32,32,32,0,135,0,0,135,0,135,32,0,56,0,0,56,24,0,0,56}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,120,0,0,120,120,0,0,120}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,120,0,0,120,120,0,0,120}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,112,0,0,112,112,0,0,112}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,112,0,0,112,112,0,0,112}, 

{0,129,12,12,141,12,12,0,0,12,12,12,0,0,0,0,129,0,0,129,0,129,0,0,124,0,0,112,124,12,12,124}, 

{0,1,2,2,3,2,2,0,0,14,14,14,12,0,12,0,1,12,12,13,12,1,12,0,126,0,0,112,114,14,2,126}, 

{0,1,2,2,3,2,2,0,0,14,14,14,12,0,12,0,1,12,12,13,12,1,12,0,126,0,0,112,114,14,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,118,0,0,112,114,6,2,118}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,126,0,0,120,122,6,2,126}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,126,0,0,120,90,6,2,126}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,62,0,0,56,26,6,2,62}, 

{0,129,66,66,195,66,66,0,0,70,70,70,4,0,4,0,129,4,4,133,4,129,4,0,118,0,0,48,114,70,66,118}, 

{0,129,66,66,195,66,66,0,0,78,78,78,12,0,12,0,129,12,12,141,12,129,12,0,78,0,0,0,66,78,66,78}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,16,126,126,126,60,16,60,16,145,44,44,189,44,145,44,16,110,0,0,0,66,11

0,66,110}, 

{0,1,66,66,67,66,66,0,8,126,126,126,60,8,60,8,9,52,52,61,52,9,52,8,118,0,0,0,66,118,66,118}, 

{0,1,66,66,67,66,66,0,32,126,126,126,60,32,60,32,33,28,28,61,28,33,28,32,94,0,0,0,66,94,66,94}

, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

236 

 

 

{0,129,66,66,195,66,66,0,4,126,126,126,60,4,60,4,133,56,56,189,56,133,56,4,122,0,0,0,66,122,66

,122}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,60,60,61,60,60,0,0,60,60,60,0,0,0,0,1,0,0,1,0,1,0,0,60,0,0,0,60,60,60,60}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}

, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}

, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{14,204,12,14,206,12,12,14,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,0,0,0,0,0,0,0,0}, 

{0,128,0,0,128,0,0,0,1,1,1,1,1,1,1,1,128,0,0,128,0,128,0,0,0,0,0,0,0,0,0,0}, 

{0,128,62,62,190,62,62,0,1,63,63,63,1,1,1,1,128,0,0,128,0,128,0,0,126,0,0,64,126,62,62,126}, 

{0,128,34,34,162,34,34,0,1,63,63,63,29,1,29,1,128,28,28,156,28,128,28,0,62,0,0,0,34,62,34,62}, 

{0,128,2,2,130,2,2,0,17,63,63,63,61,17,61,17,144,44,44,188,44,144,44,16,46,0,0,0,2,46,2,46}, 

{0,128,0,0,128,0,0,0,33,63,63,63,63,33,63,33,160,30,30,190,30,160,30,32,30,0,0,0,0,30,0,30}, 

{0,128,0,0,128,0,0,0,1,63,63,63,63,1,63,1,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,128,0,0,128,0,0,0,1,63,63,63,63,1,63,1,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,14,14,14,14,0,14,0,129,14,14,143,14,129,14,0,14,0,0,0,0,14,0,14}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,54,0,0,48,48,6,0,54}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,62,16,16,56,56,22,16,62}, 

{0,129,0,0,129,0,0,0,4,6,6,6,6,4,6,4,133,2,2,135,2,133,2,4,10,0,0,8,8,2,0,10}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,22,0,0,16,22,6,6,22}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,48,0,0,48,48,0,0,48}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,56,0,0,56,56,0,0,56}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,24,16,16,24,24,16,16,24}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,40,0,0,40,40,0,0,40}, 

{0,195,0,0,195,0,0,0,0,32,32,0,32,32,32,0,195,0,0,195,0,195,32,0,56,0,0,56,24,0,0,56}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0} 

}; 

 

const uint8_t nyan4[96][32] PROGMEM = { 

{28,153,24,28,157,24,24,28,14,14,14,14,14,14,14,14,129,0,0,129,0,129,0,0,0,0,0,0,0,0,0,0}, 

{28,153,24,28,157,24,24,28,14,14,14,14,14,14,14,14,129,0,0,129,0,129,0,0,32,0,0,32,32,0,0,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,25,24,28,29,24,24,28,14,78,78,78,14,78,78,78,65,64,64,65,64,65,64,64,32,0,0,32,32,0,0,32}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,128,0,0,128,128,0,0,128}, 

{0,1,124,124,125,124,124,0,2,126,126,126,2,2,2,2,1,0,0,1,0,1,0,0,252,0,0,128,252,124,124,252}, 

{0,1,68,68,69,68,68,0,0,124,124,124,56,0,56,0,1,56,56,57,56,1,56,0,124,0,0,0,68,124,68,124}, 

{0,129,64,64,193,64,64,0,0,124,124,124,60,0,60,0,129,60,60,189,60,129,60,0,124,0,0,0,64,124,64

,124}, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,124,0,0,0,0,124,0,124}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

237 

 

 

{0,1,0,0,1,0,0,0,16,124,124,124,124,16,124,16,17,108,108,125,108,17,108,16,236,0,0,128,128,108

,0,236}, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,252,0,0,128,128,124,0,252

}, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,124,0,0,0,0,124,0,124}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,4,124,124,124,124,4,124,4,133,120,120,253,120,133,120,4,120,0,0,0,0,120,0

,120}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,0,92,92,92,92,0,92,0,129,92,92,221,92,129,92,0,92,0,0,0,0,92,0,92}, 

{0,129,0,0,129,0,0,0,4,4,4,4,4,4,4,4,133,0,0,133,0,133,0,4,32,0,0,32,32,0,0,32}, 

{0,129,0,0,129,0,0,0,0,4,4,4,4,0,4,0,129,4,4,133,4,129,4,0,124,0,0,120,120,4,0,124}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,124,0,0,120,120,4,0,124}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,212,0,0,208,208,4,0,212}, 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,156,0,0,144,144,12,0,156}, 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,60,0,0,48,48,12,0,60}, 

{0,129,4,4,133,4,4,0,0,12,12,12,8,0,8,0,129,8,8,137,8,129,8,0,60,0,0,48,52,12,4,60}, 

{0,3,12,12,15,12,12,0,0,12,12,12,0,0,0,0,3,0,0,3,0,3,0,0,60,0,0,48,60,12,12,60}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,144,0,0,144,144,0,0,144}, 

{0,15,0,0,15,0,0,0,0,0,0,0,0,0,0,0,15,0,0,15,0,15,0,0,176,0,0,176,176,0,0,176}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,16,0,0,16,16,0,0,16}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,88,0,0,88,88,0,0,88}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,32,0,0,32,32,0,0,32}, 

{0,223,0,0,223,0,0,0,0,0,0,0,0,0,0,0,223,0,0,223,0,223,0,0,0,0,0,0,0,0,0,0}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,135,0,0,135,0,0,0,0,32,32,0,32,32,32,0,135,0,0,135,0,135,32,0,56,0,0,56,24,0,0,56}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,120,0,0,120,120,0,0,120}, 

{0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,0,7,0,0,7,0,7,0,0,112,0,0,112,112,0,0,112}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,112,0,0,112,112,0,0,112}, 

{0,129,12,12,141,12,12,0,0,12,12,12,0,0,0,0,129,0,0,129,0,129,0,0,124,0,0,112,124,12,12,124}, 

{0,129,2,2,131,2,2,0,0,14,14,14,12,0,12,0,129,12,12,141,12,129,12,0,126,0,0,112,114,14,2,126}, 

{0,1,2,2,3,2,2,0,0,14,14,14,12,0,12,0,1,12,12,13,12,1,12,0,126,0,0,112,114,14,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,118,0,0,112,114,6,2,118}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,126,0,0,120,122,6,2,126}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,126,0,0,120,90,6,2,126}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,62,0,0,56,26,6,2,62}, 

{0,129,66,66,195,66,66,0,0,70,70,70,4,0,4,0,129,4,4,133,4,129,4,0,118,0,0,48,114,70,66,118}, 

{0,129,66,66,195,66,66,0,0,78,78,78,12,0,12,0,129,12,12,141,12,129,12,0,78,0,0,0,66,78,66,78}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,16,126,126,126,60,16,60,16,145,44,44,189,44,145,44,16,110,0,0,0,66,11

0,66,110}, 

{0,129,66,66,195,66,66,0,8,126,126,126,60,8,60,8,137,52,52,189,52,137,52,8,118,0,0,0,66,118,66

,118}, 

{0,1,66,66,67,66,66,0,32,126,126,126,60,32,60,32,33,28,28,61,28,33,28,32,94,0,0,0,66,94,66,94}

, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,129,66,66,195,66,66,0,4,126,126,126,60,4,60,4,133,56,56,189,56,133,56,4,122,0,0,0,66,122,66

,122}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,1,60,60,61,60,60,0,0,60,60,60,0,0,0,0,1,0,0,1,0,1,0,0,60,0,0,0,60,60,60,60}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{12,9,8,12,13,8,8,12,14,78,78,78,14,78,78,78,65,64,64,65,64,65,64,64,0,0,0,0,0,0,0,0}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}

, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

238 

 

 

{28,153,24,28,157,24,24,28,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0

,32}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,32,0,0,32,32,0,0,32

}, 

{12,137,8,12,141,8,8,12,14,78,78,78,14,78,78,78,193,64,64,193,64,193,64,64,0,0,0,0,0,0,0,0}, 

{14,204,12,14,206,12,12,14,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,16,0,0,16,16,0,0,1

6}, 

{14,140,12,14,142,12,12,14,7,39,39,39,7,39,39,39,160,32,32,160,32,160,32,32,16,0,0,16,16,0,0,1

6}, 

{0,128,0,0,128,0,0,0,1,1,1,1,1,1,1,1,128,0,0,128,0,128,0,0,64,0,0,64,64,0,0,64}, 

{0,128,62,62,190,62,62,0,1,63,63,63,1,1,1,1,128,0,0,128,0,128,0,0,126,0,0,64,126,62,62,126}, 

{0,128,34,34,162,34,34,0,1,63,63,63,29,1,29,1,128,28,28,156,28,128,28,0,62,0,0,0,34,62,34,62}, 

{0,128,2,2,130,2,2,0,17,63,63,63,61,17,61,17,144,44,44,188,44,144,44,16,46,0,0,0,2,46,2,46}, 

{0,128,0,0,128,0,0,0,33,63,63,63,63,33,63,33,160,30,30,190,30,160,30,32,30,0,0,0,0,30,0,30}, 

{0,128,0,0,128,0,0,0,1,63,63,63,63,1,63,1,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,128,0,0,128,0,0,0,1,63,63,63,63,1,63,1,128,62,62,190,62,128,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,14,14,14,14,0,14,0,129,14,14,143,14,129,14,0,14,0,0,0,0,14,0,14}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,54,0,0,48,48,6,0,54}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,62,16,16,56,56,22,16,62}, 

{0,129,0,0,129,0,0,0,4,6,6,6,6,4,6,4,133,2,2,135,2,133,2,4,10,0,0,8,8,2,0,10}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,22,0,0,16,22,6,6,22}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,48,0,0,48,48,0,0,48}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,56,0,0,56,56,0,0,56}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,24,16,16,24,24,16,16,24}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,40,0,0,40,40,0,0,40}, 

{0,195,0,0,195,0,0,0,0,32,32,0,32,32,32,0,195,0,0,195,0,195,32,0,56,0,0,56,24,0,0,56}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0} 

}; 

 

const uint8_t nyan5[96][32] PROGMEM = { 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,9,8,12,45,40,8,12,14,78,78,78,14,78,78,78,97,96,96,97,64,97,96,96,0,0,0,0,0,0,0,0}, 

{12,9,8,12,13,8,8,12,14,78,78,78,14,78,78,78,65,64,64,65,64,65,64,64,128,0,0,128,128,0,0,128}, 

{12,9,8,12,13,8,8,12,14,14,14,14,14,14,14,14,1,0,0,1,0,1,0,0,128,0,0,128,128,0,0,128}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{0,129,124,124,253,124,124,0,2,126,126,126,2,2,2,2,129,0,0,129,0,129,0,0,124,0,0,0,124,124,124

,124}, 

{0,1,68,68,69,68,68,0,0,124,124,124,56,0,56,0,1,56,56,57,56,1,56,0,124,0,0,0,68,124,68,124}, 

{0,1,64,64,65,64,64,0,0,124,124,124,60,0,60,0,1,60,60,61,60,1,60,0,252,0,0,128,192,124,64,252}

, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,252,0,0,128,128,124,0,252

}, 

{0,1,0,0,1,0,0,0,16,124,124,124,124,16,124,16,17,108,108,125,108,17,108,16,108,0,0,0,0,108,0,1

08}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,4,124,124,124,124,4,124,4,133,120,120,253,120,133,120,4,120,0,0,0,0,120,0

,120}, 

{0,129,0,0,129,0,0,0,0,92,92,92,92,0,92,0,129,92,92,221,92,129,92,0,92,0,0,0,0,92,0,92}, 

{0,129,0,0,129,0,0,0,0,4,4,4,4,0,4,0,129,4,4,133,4,129,4,0,36,0,0,32,32,4,0,36}, 

{0,1,0,0,1,0,0,0,4,4,4,4,4,4,4,4,5,0,0,5,0,5,0,4,120,0,0,120,120,0,0,120}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,252,0,0,248,248,4,0,252}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,212,0,0,208,208,4,0,212}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

239 

 

 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,28,0,0,16,16,12,0,28}, 

{0,129,0,0,129,0,0,0,0,12,12,12,12,0,12,0,129,12,12,141,12,129,12,0,60,0,0,48,48,12,0,60}, 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,60,0,0,48,48,12,0,60}, 

{0,1,4,4,5,4,4,0,0,12,12,12,8,0,8,0,1,8,8,9,8,1,8,0,188,0,0,176,180,12,4,188}, 

{0,3,12,12,15,12,12,0,0,12,12,12,0,0,0,0,3,0,0,3,0,3,0,0,156,0,0,144,156,12,12,156}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,48,0,0,48,48,0,0,48}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,16,0,0,16,16,0,0,16}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,88,0,0,88,88,0,0,88}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,32,0,0,32,32,0,0,32}, 

{0,223,0,0,223,0,0,0,0,0,0,0,0,0,0,0,223,0,0,223,0,223,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,135,0,0,135,0,0,0,0,32,32,0,32,32,32,0,135,0,0,135,0,135,32,0,56,0,0,56,24,0,0,56}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,112,0,0,112,112,0,0,112}, 

{0,1,12,12,13,12,12,0,0,12,12,12,0,0,0,0,1,0,0,1,0,1,0,0,124,0,0,112,124,12,12,124}, 

{0,1,2,2,3,2,2,0,0,14,14,14,12,0,12,0,1,12,12,13,12,1,12,0,126,0,0,112,114,14,2,126}, 

{0,129,2,2,131,2,2,0,0,14,14,14,12,0,12,0,129,12,12,141,12,129,12,0,126,0,0,112,114,14,2,126}, 

{0,129,2,2,131,2,2,0,0,14,14,14,12,0,12,0,129,12,12,141,12,129,12,0,126,0,0,112,114,14,2,126}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,118,0,0,112,114,6,2,118}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,126,0,0,120,122,6,2,126}, 

{0,1,2,2,3,2,2,0,0,38,38,6,36,32,36,0,1,4,4,5,4,1,36,0,126,0,0,120,90,6,2,126}, 

{0,129,2,2,131,2,2,0,0,38,38,6,36,32,36,0,129,4,4,133,4,129,36,0,62,0,0,56,26,6,2,62}, 

{0,129,66,66,195,66,66,0,0,70,70,70,4,0,4,0,129,4,4,133,4,129,4,0,118,0,0,48,114,70,66,118}, 

{0,129,66,66,195,66,66,0,0,78,78,78,12,0,12,0,129,12,12,141,12,129,12,0,78,0,0,0,66,78,66,78}, 

{0,129,66,66,195,66,66,0,16,126,126,126,60,16,60,16,145,44,44,189,44,145,44,16,110,0,0,0,66,11

0,66,110}, 

{0,129,66,66,195,66,66,0,8,126,126,126,60,8,60,8,137,52,52,189,52,137,52,8,118,0,0,0,66,118,66

,118}, 

{0,129,66,66,195,66,66,0,32,126,126,126,60,32,60,32,161,28,28,189,28,161,28,32,94,0,0,0,66,94,

66,94}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,66,66,67,66,66,0,4,126,126,126,60,4,60,4,5,56,56,61,56,5,56,4,122,0,0,0,66,122,66,122}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,60,60,189,60,60,0,0,60,60,60,0,0,0,0,129,0,0,129,0,129,0,0,60,0,0,0,60,60,60,60}, 

{0,129,0,0,129,0,0,0,2,2,2,2,2,2,2,2,129,0,0,129,0,129,0,0,0,0,0,0,0,0,0,0}, 

{44,9,8,12,45,40,8,12,14,14,14,14,14,14,14,14,33,32,32,33,0,33,32,32,0,0,0,0,0,0,0,0}, 

{44,9,8,12,45,40,8,12,14,14,14,14,14,14,14,14,33,32,32,33,0,33,32,32,16,0,0,16,16,0,0,16}, 

{44,9,8,12,45,40,8,12,14,78,78,78,14,78,78,78,97,96,96,97,64,97,96,96,16,0,0,16,16,0,0,16}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{6,196,4,6,198,4,4,6,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,0,0,0,0,0,0,0,0}, 

{6,196,4,6,198,4,4,6,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,0,0,0,0,0,0,0,0}, 

{6,132,4,6,134,4,4,6,7,39,39,39,7,39,39,39,160,32,32,160,32,160,32,32,0,0,0,0,0,0,0,0}, 

{14,140,12,14,142,12,12,14,7,39,39,39,7,39,39,39,160,32,32,160,32,160,32,32,64,0,0,64,64,0,0,6

4}, 

{44,137,8,12,173,40,8,12,14,14,14,14,14,14,14,14,161,32,32,161,0,161,32,32,80,0,0,80,80,0,0,80

}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,64,0,0,64,64,0,0,64}, 

{0,129,62,62,191,62,62,0,0,62,62,62,0,0,0,0,129,0,0,129,0,129,0,0,62,0,0,0,62,62,62,62}, 

{0,129,34,34,163,34,34,0,0,62,62,62,28,0,28,0,129,28,28,157,28,129,28,0,62,0,0,0,34,62,34,62}, 

{0,129,2,2,131,2,2,0,16,62,62,62,60,16,60,16,145,44,44,189,44,145,44,16,46,0,0,0,2,46,2,46}, 

{0,129,0,0,129,0,0,0,32,62,62,62,62,32,62,32,161,30,30,191,30,161,30,32,30,0,0,0,0,30,0,30}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,14,14,14,14,0,14,0,129,14,14,143,14,129,14,0,14,0,0,0,0,14,0,14}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

240 

 

 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,54,0,0,48,48,6,0,54}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,34,34,2,34,32,34,0,129,2,2,131,2,129,34,0,58,0,0,56,24,2,0,58}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,62,16,16,56,56,22,16,62}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,14,0,0,8,8,6,0,14}, 

{0,129,0,0,129,0,0,0,4,6,6,6,6,4,6,4,133,2,2,135,2,133,2,4,50,0,0,48,48,2,0,50}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,22,0,0,16,18,6,2,22}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,54,0,0,48,54,6,6,54}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,56,0,0,56,56,0,0,56}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,24,16,16,24,24,16,16,24}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,40,0,0,40,40,0,0,40}, 

{0,195,0,0,195,0,0,0,0,32,32,0,32,32,32,0,195,0,0,195,0,195,32,0,56,0,0,56,24,0,0,56}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0} 

}; 

 

const uint8_t nyan6[96][32] PROGMEM = { 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,137,8,12,173,40,8,12,14,78,78,78,14,78,78,78,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,1

6}, 

{44,9,8,12,45,40,8,12,14,78,78,78,14,78,78,78,97,96,96,97,64,97,96,96,0,0,0,0,0,0,0,0}, 

{12,9,8,12,13,8,8,12,14,78,78,78,14,78,78,78,65,64,64,65,64,65,64,64,128,0,0,128,128,0,0,128}, 

{12,9,8,12,13,8,8,12,14,14,14,14,14,14,14,14,1,0,0,1,0,1,0,0,128,0,0,128,128,0,0,128}, 

{0,1,0,0,1,0,0,0,2,2,2,2,2,2,2,2,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0}, 

{0,129,124,124,253,124,124,0,2,126,126,126,2,2,2,2,129,0,0,129,0,129,0,0,124,0,0,0,124,124,124

,124}, 

{0,1,68,68,69,68,68,0,0,124,124,124,56,0,56,0,1,56,56,57,56,1,56,0,124,0,0,0,68,124,68,124}, 

{0,1,64,64,65,64,64,0,0,124,124,124,60,0,60,0,1,60,60,61,60,1,60,0,252,0,0,128,192,124,64,252}

, 

{0,1,0,0,1,0,0,0,0,124,124,124,124,0,124,0,1,124,124,125,124,1,124,0,252,0,0,128,128,124,0,252

}, 

{0,1,0,0,1,0,0,0,16,124,124,124,124,16,124,16,17,108,108,125,108,17,108,16,108,0,0,0,0,108,0,1

08}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,0,124,124,124,124,0,124,0,129,124,124,253,124,129,124,0,124,0,0,0,0,124,0

,124}, 

{0,129,0,0,129,0,0,0,4,124,124,124,124,4,124,4,133,120,120,253,120,133,120,4,120,0,0,0,0,120,0

,120}, 

{0,129,0,0,129,0,0,0,0,76,76,76,76,0,76,0,129,76,76,205,76,129,76,0,76,0,0,0,0,76,0,76}, 

{0,129,0,0,129,0,0,0,0,68,68,68,68,0,68,0,129,68,68,197,68,129,68,0,116,0,0,48,48,68,0,116}, 

{0,1,0,0,1,0,0,0,4,36,36,4,36,36,36,4,5,0,0,5,0,5,32,4,56,0,0,56,24,0,0,56}, 

{0,1,0,0,1,0,0,0,0,36,36,4,36,32,36,0,1,4,4,5,4,1,36,0,252,0,0,248,216,4,0,252}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,252,0,0,248,248,4,0,252}, 

{0,1,0,0,1,0,0,0,0,4,4,4,4,0,4,0,1,4,4,5,4,1,4,0,116,0,0,112,112,4,0,116}, 

{0,129,0,0,129,0,0,0,0,12,12,12,12,0,12,0,129,12,12,141,12,129,12,0,124,0,0,112,112,12,0,124}, 

{0,1,0,0,1,0,0,0,0,12,12,12,12,0,12,0,1,12,12,13,12,1,12,0,124,0,0,112,112,12,0,124}, 

{0,1,4,4,5,4,4,0,0,12,12,12,8,0,8,0,1,8,8,9,8,1,8,0,252,0,0,240,244,12,4,252}, 

{0,3,12,12,15,12,12,0,0,12,12,12,0,0,0,0,3,0,0,3,0,3,0,0,252,0,0,240,252,12,12,252}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,112,0,0,112,112,0,0,112}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,120,0,0,120,120,0,0,120}, 

{0,135,0,0,135,0,0,0,0,32,32,0,32,32,32,0,135,0,0,135,0,135,32,0,56,0,0,56,24,0,0,56}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0}, 

{0,207,0,0,207,0,0,0,0,0,0,0,0,0,0,0,207,0,0,207,0,207,0,0,0,0,0,0,0,0,0,0}, 

{0,199,0,0,199,0,0,0,0,32,32,0,32,32,32,0,199,0,0,199,0,199,32,0,48,0,0,48,16,0,0,48}, 

{0,195,0,0,195,0,0,0,0,32,32,0,32,32,32,0,195,0,0,195,0,195,32,0,56,0,0,56,24,0,0,56}, 

{0,131,0,0,131,0,0,0,0,0,0,0,0,0,0,0,131,0,0,131,0,131,0,0,40,0,0,40,40,0,0,40}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

241 

 

 

{0,135,0,0,135,0,0,0,0,0,0,0,0,0,0,0,135,0,0,135,0,135,0,0,24,16,16,24,24,16,16,24}, 

{0,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,3,0,0,56,0,0,56,56,0,0,56}, 

{0,1,4,4,5,4,4,0,0,4,4,4,0,0,0,0,1,0,0,1,0,1,0,0,52,0,0,48,52,4,4,52}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,22,0,0,16,18,6,2,22}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,54,0,0,48,50,6,2,54}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,14,0,0,8,10,6,2,14}, 

{0,1,2,2,3,2,2,0,0,6,6,6,4,0,4,0,1,4,4,5,4,1,4,0,62,16,16,56,58,22,18,62}, 

{0,1,2,2,3,2,2,0,0,34,34,2,32,32,32,0,1,0,0,1,0,1,32,0,58,0,0,56,26,2,2,58}, 

{0,1,66,66,67,66,66,0,0,98,98,66,32,32,32,0,1,0,0,1,0,1,32,0,122,0,0,56,90,66,66,122}, 

{0,129,66,66,195,66,66,0,0,70,70,70,4,0,4,0,129,4,4,133,4,129,4,0,118,0,0,48,114,70,66,118}, 

{0,129,66,66,195,66,66,0,0,78,78,78,12,0,12,0,129,12,12,141,12,129,12,0,78,0,0,0,66,78,66,78}, 

{0,129,66,66,195,66,66,0,16,126,126,126,60,16,60,16,145,44,44,189,44,145,44,16,110,0,0,0,66,11

0,66,110}, 

{0,129,66,66,195,66,66,0,8,126,126,126,60,8,60,8,137,52,52,189,52,137,52,8,118,0,0,0,66,118,66

,118}, 

{0,129,66,66,195,66,66,0,32,126,126,126,60,32,60,32,161,28,28,189,28,161,28,32,94,0,0,0,66,94,

66,94}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,129,66,66,195,66,66,0,0,126,126,126,60,0,60,0,129,60,60,189,60,129,60,0,126,0,0,0,66,126,66

,126}, 

{0,1,66,66,67,66,66,0,4,126,126,126,60,4,60,4,5,56,56,61,56,5,56,4,122,0,0,0,66,122,66,122}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,1,66,66,67,66,66,0,0,126,126,126,60,0,60,0,1,60,60,61,60,1,60,0,126,0,0,0,66,126,66,126}, 

{0,129,60,60,189,60,60,0,0,60,60,60,0,0,0,0,129,0,0,129,0,129,0,0,60,0,0,0,60,60,60,60}, 

{0,129,0,0,129,0,0,0,2,2,2,2,2,2,2,2,129,0,0,129,0,129,0,0,0,0,0,0,0,0,0,0}, 

{44,9,8,12,45,40,8,12,14,14,14,14,14,14,14,14,33,32,32,33,0,33,32,32,80,0,0,80,80,0,0,80}, 

{44,9,8,12,45,40,8,12,14,14,14,14,14,14,14,14,33,32,32,33,0,33,32,32,16,0,0,16,16,0,0,16}, 

{44,9,8,12,45,40,8,12,14,78,78,78,14,78,78,78,97,96,96,97,64,97,96,96,16,0,0,16,16,0,0,16}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,16,0,0,16,16,0,0,16}, 

{36,129,0,4,165,32,0,4,6,70,70,70,6,70,70,70,225,96,96,225,64,225,96,96,0,0,0,0,0,0,0,0}, 

{22,196,4,6,214,20,4,6,7,39,39,39,7,39,39,39,240,48,48,240,32,240,48,48,8,0,0,8,8,0,0,8}, 

{6,196,4,6,198,4,4,6,7,39,39,39,7,39,39,39,224,32,32,224,32,224,32,32,8,0,0,8,8,0,0,8}, 

{6,132,4,6,134,4,4,6,7,39,39,39,7,39,39,39,160,32,32,160,32,160,32,32,0,0,0,0,0,0,0,0}, 

{44,137,8,12,173,40,8,12,14,14,14,14,14,14,14,14,161,32,32,161,0,161,32,32,80,0,0,80,80,0,0,80

}, 

{44,137,8,12,173,40,8,12,14,14,14,14,14,14,14,14,161,32,32,161,0,161,32,32,80,0,0,80,80,0,0,80

}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,64,0,0,64,64,0,0,64}, 

{0,129,62,62,191,62,62,0,0,62,62,62,0,0,0,0,129,0,0,129,0,129,0,0,62,0,0,0,62,62,62,62}, 

{0,129,34,34,163,34,34,0,0,62,62,62,28,0,28,0,129,28,28,157,28,129,28,0,62,0,0,0,34,62,34,62}, 

{0,129,2,2,131,2,2,0,16,62,62,62,60,16,60,16,145,44,44,189,44,145,44,16,46,0,0,0,2,46,2,46}, 

{0,129,0,0,129,0,0,0,32,62,62,62,62,32,62,32,161,30,30,191,30,161,30,32,30,0,0,0,0,30,0,30}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,62,62,62,62,0,62,0,129,62,62,191,62,129,62,0,62,0,0,0,0,62,0,62}, 

{0,129,0,0,129,0,0,0,0,46,46,46,46,0,46,0,129,46,46,175,46,129,46,0,46,0,0,0,0,46,0,46}, 

{0,129,0,0,129,0,0,0,0,2,2,2,2,0,2,0,129,2,2,131,2,129,2,0,18,0,0,16,16,2,0,18}, 

{0,129,0,0,129,0,0,0,0,2,2,2,2,0,2,0,129,2,2,131,2,129,2,0,62,0,0,60,60,2,0,62}, 

{0,129,0,0,129,0,0,0,0,2,2,2,2,0,2,0,129,2,2,131,2,129,2,0,62,0,0,60,60,2,0,62}, 

{0,129,0,0,129,0,0,0,0,2,2,2,2,0,2,0,129,2,2,131,2,129,2,0,42,0,0,40,40,2,0,42}, 

{0,129,0,0,129,0,0,0,0,6,6,6,6,0,6,0,129,6,6,135,6,129,6,0,14,0,0,8,8,6,0,14}, 

{0,129,0,0,129,0,0,0,4,6,6,6,6,4,6,4,133,2,2,135,2,133,2,4,26,0,0,24,24,2,0,26}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,30,0,0,24,26,6,2,30}, 

{0,129,2,2,131,2,2,0,0,6,6,6,4,0,4,0,129,4,4,133,4,129,4,0,30,0,0,24,26,6,2,30}, 

{0,129,6,6,135,6,6,0,0,6,6,6,0,0,0,0,129,0,0,129,0,129,0,0,78,0,0,72,78,6,6,78}, 

{0,129,0,0,129,0,0,0,0,0,0,0,0,0,0,0,129,0,0,129,0,129,0,0,24,0,0,24,24,0,0,24}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,8,0,0,8,8,0,0,8}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,44,0,0,44,44,0,0,44}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,60,0,0,60,60,0,0,60}, 

{0,195,0,0,195,0,0,0,0,0,0,0,0,0,0,0,195,0,0,195,0,195,0,0,16,0,0,16,16,0,0,16}, 

{0,239,0,0,239,0,0,0,0,0,0,0,0,0,0,0,239,0,0,239,0,239,0,0,0,0,0,0,0,0,0,0}, 

{0,255,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,0,0,255,0,255,0,0,0,0,0,0,0,0,0,0} 

}; 

 

const uint8_t rsgcLogo[96][32] PROGMEM = { 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

242 

 

 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,127,127,127,255,255,127,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,127,127,255,255,255,255,127}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,127,119}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,127,255,255,255,127,247,119,119}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,255,255,127,127,127,127,111,127}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,16,0,255,255,127,127,207,255,111,111}, 

{0,0,0,0,0,40,40,40,0,0,0,0,16,0,16,16,0,0,0,0,0,40,56,56,255,255,127,255,111,71,23,83}, 

{0,0,0,0,64,0,0,0,56,0,0,0,40,0,16,170,0,0,0,0,120,184,2,82,199,135,7,63,21,239,239,127}, 

{0,134,0,0,2,0,130,132,0,134,0,2,4,150,20,130,0,0,0,0,0,0,16,0,121,253,123,251,105,57,239,107}

, 

{0,6,34,32,34,22,32,54,0,6,34,34,4,32,4,100,0,88,88,0,0,16,80,0,129,167,217,167,219,253,111,17

5}, 

{0,130,130,18,18,52,164,130,0,130,146,2,134,18,218,26,0,104,96,8,104,96,64,40,5,131,125,199,18

9,179,135,73}, 

{0,0,40,0,32,72,120,224,0,0,40,0,40,96,40,32,0,16,0,16,16,0,144,144,199,7,255,231,175,215,245,

163}, 

{0,0,16,16,0,0,48,48,0,0,16,16,16,0,24,0,0,40,32,8,32,32,0,40,199,199,111,119,31,87,199,23}, 

{0,0,0,0,32,0,56,40,0,0,0,0,32,32,0,36,0,24,24,0,24,24,20,16,199,199,127,119,111,79,123,251}, 

{0,0,0,0,0,0,20,20,0,0,0,0,0,0,16,8,0,0,0,0,0,0,8,4,255,127,255,127,103,251,239,195}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,127,255,127,127,255,251,119}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,207,207,79,207,79,71}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,127,127,255,127,127,255,127}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,207,207,207,207,207,207}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,239,239,239,239,239,239,239,239}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,223,223,223,223,223,223,223,223}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,205,205,207,207,205,205}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,223,223,223,223,223,223,223,223}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,207,207,207,207,207,207}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,247,247,247,247,247,247,247,247}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,247,247,247,247,247,247,247,247}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,199,199,199,199,199,199,199,199}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,247,247,255,255,247,247}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,215,215,215,215,215,215,215}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,247,247,215,215,247,247,215,215}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,199,199,199,199,199,199,199,199}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,247,247,255,255,247,247}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,215,215,215,215,215,215,215}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,247,247,247,247,247,247,247,247}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,231,231,231,231,231,231,231,231}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,143,143,207,207,143,143}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,247,247,247,247,247,247,247,247}, 

{0,0,128,128,128,128,4,0,0,0,128,128,128,128,132,0,0,0,0,0,0,0,0,0,71,199,71,71,71,199,195,199

}, 

{0,4,4,4,0,0,4,4,0,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,251,255,251,255,255,255,63,251}, 

{0,0,0,0,4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,255,255,251,255,243,235,239,55}, 

{0,0,0,0,0,16,24,12,0,0,0,0,0,0,0,4,0,24,24,16,8,8,0,32,231,231,219,227,223,219,223,63}, 

{0,0,4,0,4,4,0,0,0,0,4,4,0,24,60,20,0,48,40,32,24,0,48,32,195,195,239,211,231,247,147,83}, 

{0,48,0,56,44,0,4,36,0,48,0,56,60,60,56,20,0,0,0,0,0,0,0,0,199,243,215,227,203,249,47,43}, 

{0,8,0,0,136,8,6,70,0,8,0,0,8,20,178,244,0,32,48,16,0,16,16,16,199,79,163,211,43,251,209,229}, 

{0,2,0,0,4,4,0,4,0,2,0,4,0,0,4,63,0,56,56,0,64,64,120,65,65,135,187,1,249,253,185,130}, 

{0,4,0,0,0,6,132,4,0,4,0,0,4,4,4,0,0,0,0,0,0,0,2,0,251,127,123,191,63,125,187,255}, 

{0,0,0,0,0,0,134,134,56,0,0,0,56,0,134,190,0,0,0,0,56,56,0,0,199,199,135,191,133,123,251,191}, 

{0,0,0,4,36,28,24,60,0,0,4,0,0,0,0,0,0,0,0,0,32,24,24,56,187,251,191,187,223,167,231,199}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,4,4,0,0,191,255,187,223,187,255,255,239}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,191,187,187,191,191,55}, 

{0,4,0,4,0,0,0,0,0,4,0,4,0,4,0,4,0,0,0,0,0,0,0,0,251,255,255,255,123,127,123,63}, 

{0,0,0,128,0,128,128,0,0,0,0,128,128,0,128,128,0,0,0,0,0,0,0,0,255,127,255,127,127,255,251,191

}, 

{0,0,0,0,0,128,0,128,0,0,0,0,0,128,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,127,127,127}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

243 

 

 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,127,255,255,255,127,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,127,127,191,127,191}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,127,127,255,255,63,255}, 

{0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,255,255,255,127,127,255,59,127}, 

{0,0,0,0,4,0,0,4,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,255,251,251,251,251,255,251,63}, 

{0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,255,255,191,255,255,191,179,243}, 

{0,0,0,0,0,0,0,0,0,8,0,0,8,8,8,0,0,0,0,0,0,0,0,0,183,243,255,251,247,251,163,255}, 

{0,0,0,0,0,16,16,48,0,8,0,8,8,32,12,36,0,0,0,0,8,16,20,20,247,215,223,215,159,175,227,163}, 

{0,0,0,0,0,0,0,0,28,32,40,32,56,44,40,28,0,0,0,12,24,52,32,0,195,195,195,247,231,179,159,252}, 

{0,0,0,0,0,0,1,0,0,8,0,0,9,9,8,2,0,0,0,0,0,0,0,0,246,247,191,190,182,254,247,116}, 

{0,1,3,9,0,9,3,1,0,1,3,1,19,5,18,53,0,60,60,0,8,8,56,0,192,193,254,195,245,105,178,223}, 

{0,16,16,0,0,2,48,51,0,16,16,16,0,22,8,24,0,44,44,0,36,32,12,9,195,209,253,207,225,243,236,110

}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,20,24,0,0,44,28,48,44,32,28,32,195,195,175,151,219,223,235,251}, 

{0,16,0,16,16,48,0,48,0,16,16,0,16,8,8,0,0,12,8,4,8,0,32,8,227,211,255,195,219,255,251,143}, 

{0,0,0,0,0,0,24,12,0,0,0,0,0,0,0,0,0,24,28,0,8,12,20,4,227,227,255,231,255,251,143,223}, 

{0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,24,0,0,0,0,0,0,8,24,255,255,255,255,247,171,183,191}, 

{0,0,4,0,0,4,0,0,0,0,4,0,0,4,4,4,0,0,0,0,0,0,0,0,251,255,251,251,255,251,187,187}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,4,199,199,199,199,67,135,3,195}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,175,111,47,239,239,239,239,47}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,215,151,151,215,215,151,151}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,199,199,199,199,199,199,199,199}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,207,207,207,207,207,207}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,207,207,207,207,207,207,207,207}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,199,199,199,199,199,199,199,199}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,223,223,223,223,223,223,223,223}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,223,223,223,223,223,223,223,223}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,199,199,199,199,199,199,199,199}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,223,223,223,223,223,223,223,223}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,223,223,223,223,223,223,223,223}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255} 

}; 

 

 

const uint8_t acesLogo[96][32] PROGMEM = { 

{48,0,32,0,48,32,16,48,48,32,16,0,48,48,0,32,0,0,0,0,0,0,0,0,0,0,0,16,0,0,48,0}, 

{112,0,48,64,112,112,64,48,112,112,0,0,48,112,64,112,0,0,0,0,0,0,0,0,0,0,0,0,64,0,48,0}, 

{112,8,104,24,120,120,0,112,120,96,16,24,112,112,8,120,0,0,0,0,0,0,0,0,0,0,8,24,8,8,120,0}, 

{96,24,112,24,120,120,16,96,112,104,8,16,104,120,16,112,0,0,0,0,0,0,0,0,0,24,8,8,0,0,104,8}, 

{96,16,120,8,104,96,16,120,96,120,16,16,120,112,8,96,0,0,0,0,0,0,0,0,8,16,24,0,0,8,120,16}, 

{96,20,96,24,104,96,16,108,96,116,24,0,100,100,20,96,0,0,0,0,0,0,0,0,24,12,4,8,0,28,108,24}, 

{96,20,96,0,96,96,20,96,96,116,0,20,96,96,20,116,0,0,0,0,0,0,0,0,28,8,8,28,28,28,104,28}, 

{98,0,116,22,118,98,2,118,98,116,2,2,118,98,22,98,0,0,0,0,0,0,0,0,28,8,28,8,8,30,126,10}, 

{226,20,162,64,226,226,84,226,226,182,64,84,226,226,84,246,0,0,0,0,0,0,0,0,28,8,8,28,28,92,234

,92}, 

{227,20,226,29,235,227,21,235,227,246,29,1,227,227,21,227,0,0,0,0,0,0,0,0,28,8,0,8,0,29,235,29

}, 

{227,20,254,9,235,227,21,255,227,254,21,21,255,247,9,227,0,0,0,0,0,0,0,0,8,20,28,0,0,9,255,21}

, 

{226,28,182,92,254,254,84,226,246,170,72,84,234,254,84,246,0,0,0,0,0,0,0,0,0,28,8,8,0,64,234,7

2}, 

{118,8,104,30,126,126,10,118,126,96,22,30,118,126,10,126,0,0,0,0,0,0,0,0,0,8,0,20,0,2,118,2}, 

{124,0,124,0,124,124,0,124,124,124,0,0,124,124,0,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,124,0}, 

{124,0,124,0,124,124,0,124,124,124,0,0,124,124,0,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,124,0}, 

{120,0,120,0,120,120,0,120,120,120,0,0,120,120,0,124,0,0,0,0,0,4,4,0,0,0,0,0,0,0,120,0}, 

{120,0,120,0,120,120,0,120,120,120,0,0,120,120,0,120,0,0,0,0,0,0,0,0,2,2,2,2,2,2,122,2}, 

{120,0,120,0,120,120,0,120,120,120,0,0,120,120,0,120,0,0,0,0,0,0,0,0,2,2,2,2,2,2,122,2}, 

{112,0,48,64,112,112,64,48,112,112,0,0,48,112,64,112,0,0,0,0,0,0,0,0,2,2,2,2,66,2,50,2}, 

{48,0,32,0,48,32,16,48,48,32,16,0,48,48,0,32,0,0,0,0,0,0,0,0,0,0,0,16,0,0,48,0}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24,24,24,24,24,24,24}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,8,8,8,8,8,8}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24,8,8,24,24,8,8}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

244 

 

 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,8,8,8,8,8,8}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,8,8,8,8,8,8}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,24,16,16,24,24,16,16}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,16,16,16,16,16,16,16}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,17,17,17,17,17,17,17}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,27,27,27,27,27,27,27}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,16,16,16,16,16,16,16}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,17,17,17,17,17,17,17}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3}, 

{48,0,48,0,0,48,48,48,48,48,0,0,0,48,48,48,0,0,0,0,0,0,0,0,0,0,0,0,48,0,0,0}, 

{56,0,48,8,56,56,8,56,56,48,8,8,56,56,8,56,0,0,0,0,0,0,0,0,2,2,2,2,2,10,58,10}, 

{56,0,120,64,56,120,0,120,56,120,0,0,120,56,0,120,0,0,0,0,0,0,0,0,1,1,65,1,1,1,57,1}, 

{120,0,56,64,120,120,64,120,120,56,64,64,120,120,68,124,0,0,0,0,4,0,4,4,2,2,2,2,6,66,122,70}, 

{124,0,60,64,124,124,64,124,124,60,64,64,124,124,64,124,0,0,0,0,0,0,0,0,0,0,0,0,0,64,124,64}, 

{124,0,60,0,60,60,64,124,124,60,64,0,60,124,0,124,0,0,0,0,0,0,0,0,0,0,0,64,0,0,124,0}, 

{60,0,62,66,60,126,0,62,60,62,0,64,126,124,64,62,0,0,0,0,0,0,0,0,0,0,66,0,0,0,124,64}, 

{62,128,178,4,178,58,12,58,62,178,140,132,178,178,132,178,0,0,0,0,0,0,0,0,0,0,12,136,128,12,58

,12}, 

{178,12,175,17,166,239,16,246,182,171,24,24,242,238,84,242,0,0,0,0,0,0,0,0,0,12,8,85,93,81,235

,76}, 

{227,28,241,22,243,243,28,227,243,237,6,26,227,243,28,251,0,0,0,0,0,0,0,0,12,16,0,10,8,12,227,

12}, 

{227,16,253,6,241,241,2,249,243,229,10,2,233,241,18,229,0,0,0,0,0,0,0,0,12,24,6,16,28,14,237,3

0}, 

{162,16,180,1,169,179,2,167,162,176,23,80,173,177,1,224,0,0,0,0,0,0,0,0,12,92,27,10,84,14,190,

31}, 

{32,146,162,22,54,50,2,36,34,176,148,130,176,178,130,162,0,0,0,0,0,0,0,0,12,30,24,156,136,12,6

0,28}, 

{32,16,116,64,42,112,2,100,32,112,20,18,110,48,0,98,0,0,0,0,0,0,0,0,12,28,90,8,22,14,62,30}, 

{96,16,60,68,48,112,64,56,112,36,72,64,40,112,80,100,0,0,0,0,0,0,0,0,12,24,4,16,28,76,108,92}, 

{96,28,48,80,112,112,88,100,112,44,64,88,100,116,92,120,0,0,0,0,0,0,0,0,8,20,4,8,8,76,100,72}, 

{112,8,40,80,96,104,80,112,112,40,88,88,112,104,84,112,0,0,0,0,4,4,0,0,0,8,8,16,24,80,108,76}, 

{56,0,48,64,112,120,8,120,56,48,72,0,112,112,64,48,0,0,0,0,0,0,0,0,0,0,72,8,0,8,56,72}, 

{56,0,48,8,48,56,8,48,56,48,8,8,56,56,8,56,0,0,0,0,0,0,0,0,0,0,0,0,0,8,56,8}, 

{48,0,48,0,0,48,32,32,48,48,0,0,16,48,32,48,0,0,0,0,0,0,0,0,0,0,0,0,32,0,16,0}, 

{16,32,48,0,16,16,0,16,16,48,32,32,48,48,32,56,0,0,0,0,0,8,8,0,0,0,0,32,32,0,16,0}, 

{56,0,56,0,56,56,0,56,56,56,0,0,56,56,0,56,0,0,0,0,0,0,0,0,0,0,0,0,0,0,56,0}, 

{56,0,48,8,48,48,8,48,56,48,8,8,48,48,12,48,0,0,0,0,4,4,0,4,0,0,8,0,4,8,48,12}, 

{48,12,60,0,56,60,0,56,56,52,4,4,48,60,8,48,0,0,0,0,0,0,0,0,0,12,4,8,12,0,52,12}, 

{48,12,32,24,48,48,12,48,48,44,24,20,48,48,12,52,0,0,0,0,0,0,0,0,12,0,0,20,4,12,48,12}, 

{48,0,44,24,32,32,16,36,48,40,20,16,36,34,16,40,0,0,0,0,2,2,0,2,12,4,24,0,14,28,46,30}, 

{48,2,42,0,36,50,16,56,48,34,26,2,44,34,0,32,0,0,0,0,0,0,0,0,12,14,22,20,10,28,62,30}, 

{160,18,176,26,186,178,16,168,176,162,10,16,162,178,16,176,0,0,0,0,0,0,0,0,12,30,6,14,4,12,174

,14}, 

{241,2,171,64,229,243,80,249,241,163,90,66,237,227,64,225,0,0,0,0,0,0,0,0,12,14,22,20,10,92,25

5,94}, 

{241,2,239,24,227,227,16,231,243,233,20,16,229,227,18,233,0,0,0,0,0,0,0,0,12,6,24,2,14,28,237,

30}, 

{241,14,227,26,243,243,14,241,243,237,24,22,241,243,14,247,0,0,0,0,0,0,0,0,12,2,0,20,4,12,241,

12}, 

{243,12,189,66,249,253,66,251,251,181,70,70,243,253,74,243,0,0,0,0,0,0,0,0,0,12,4,10,14,66,245

,76}, 

{190,0,178,8,178,182,12,182,190,178,12,8,178,178,8,178,0,0,0,0,0,0,0,1,0,0,12,4,0,12,182,12}, 

{62,0,62,0,62,62,0,62,62,62,0,0,62,62,0,62,0,0,0,0,0,0,0,0,0,0,0,0,0,0,62,0}, 

{60,0,60,0,60,60,0,60,60,60,0,0,60,62,0,60,0,0,0,0,2,0,0,0,0,0,0,2,0,0,60,0}, 

{60,0,60,0,60,60,0,60,60,60,0,0,60,60,0,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0}, 

{60,0,60,0,60,60,0,60,60,60,0,0,60,60,0,60,0,0,0,0,0,0,0,0,3,3,3,3,3,3,63,3}, 

{56,0,56,0,56,56,0,56,56,56,0,0,60,56,0,56,0,0,0,0,0,4,0,4,0,0,0,4,4,0,56,4}, 

{56,0,56,0,56,56,0,56,56,56,0,0,56,56,0,56,0,0,0,0,0,0,0,0,3,3,3,3,3,3,59,3}, 

{16,32,48,0,48,48,0,16,48,16,0,0,48,16,32,56,0,0,0,0,0,8,8,0,0,0,0,32,32,0,16,32}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

245 

 

 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,8,8,8,8,8,8}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,0,0,8,8,0,0}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4}, 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

}; 

 

const uint8_t darcy[96][32] PROGMEM = { 

{0,0,0,0,0,127,255,0,0,0,0,0,127,0,127,255,0,0,0,0,0,0,0,0,127,255,255,127,128,128,0,127}, 

{0,0,0,0,0,63,127,0,0,0,0,0,63,0,63,63,0,0,0,0,0,0,0,64,63,63,63,63,0,0,64,63}, 

{0,0,0,0,0,63,31,32,0,0,0,0,31,0,31,63,0,0,0,0,0,0,0,0,31,63,63,31,32,32,0,95}, 

{0,0,0,0,0,31,31,32,0,0,0,0,31,0,31,31,0,0,0,0,0,0,0,64,31,31,31,31,0,0,0,127}, 

{0,0,0,0,16,15,31,0,0,0,0,0,31,0,31,31,0,0,0,0,0,0,0,0,31,31,31,15,16,16,48,79}, 

{0,0,0,0,0,31,31,16,0,0,0,0,15,0,15,11,0,0,0,0,0,0,0,16,15,15,15,15,0,16,20,75}, 

{0,0,0,0,0,31,11,4,0,0,0,0,11,4,15,11,0,0,0,0,0,0,16,16,15,15,15,15,0,20,4,91}, 

{0,0,0,0,4,31,25,4,0,0,4,0,9,4,11,11,0,0,0,0,0,16,16,0,9,13,9,13,6,18,2,15}, 

{0,0,0,12,0,16,48,13,0,12,0,0,44,8,60,20,0,0,0,0,0,0,0,0,12,0,4,8,36,52,49,24}, 

{0,0,0,0,12,20,17,21,0,5,24,56,40,49,13,32,0,0,0,0,0,0,0,0,12,0,44,20,56,9,9,63}, 

{0,0,0,0,68,64,10,18,0,88,4,70,70,91,44,49,0,0,0,0,0,1,0,32,12,0,20,92,80,80,103,15}, 

{0,0,0,0,19,78,37,67,0,64,87,30,109,18,91,10,0,0,0,0,0,0,0,0,4,0,76,64,20,96,62,153}, 

{0,0,0,67,13,19,7,65,0,75,68,66,5,116,102,132,0,0,0,0,0,0,0,0,4,72,72,74,25,125,69,188}, 

{0,0,0,64,198,111,200,163,64,0,134,168,33,42,45,137,0,0,0,0,0,0,0,0,15,65,239,11,8,72,184,253}

, 

{0,0,64,0,8,23,55,32,64,0,0,32,15,0,255,7,0,0,0,0,0,0,0,0,15,79,103,79,32,48,8,39}, 

{0,0,0,0,0,15,95,16,0,0,0,128,111,128,175,79,0,0,0,0,128,0,144,144,79,79,111,47,64,160,64,239}

, 

{0,0,0,32,0,111,127,16,0,32,96,32,207,208,79,159,0,0,0,0,0,0,128,0,79,79,47,111,144,48,0,159}, 

{0,0,0,0,32,29,237,0,0,32,64,0,221,48,141,13,0,0,0,0,0,0,0,0,45,141,77,205,96,160,64,13}, 

{0,0,0,32,32,31,79,0,0,32,16,160,47,240,255,191,0,0,0,0,0,0,0,0,15,47,31,175,144,176,208,223}, 

{0,0,0,0,96,61,157,144,0,32,0,128,253,32,157,189,0,0,0,0,0,0,0,0,253,93,221,93,0,0,128,125}, 

{0,0,0,0,0,255,239,144,0,0,128,0,127,32,79,111,0,0,0,0,0,0,0,0,127,255,95,95,160,128,16,239}, 

{0,0,0,0,0,245,245,0,0,0,0,0,245,0,245,245,0,0,0,0,0,0,0,0,245,245,245,245,0,0,0,213}, 

{0,0,0,0,0,253,93,128,0,0,0,0,93,32,61,253,0,0,0,0,0,0,0,0,253,221,125,29,224,64,0,93}, 

{0,0,0,0,0,253,253,0,0,0,128,128,125,128,253,253,0,0,0,0,0,0,0,0,253,125,125,253,0,0,0,125}, 

{0,0,0,0,0,255,127,128,0,0,64,64,63,64,127,255,0,0,0,0,0,0,0,0,255,191,63,127,128,0,0,63}, 

{0,0,0,0,0,253,253,0,0,0,0,0,253,0,253,253,0,0,0,0,0,0,0,0,253,253,253,253,0,0,0,253}, 

{0,0,0,0,0,245,245,0,0,0,0,0,245,0,245,245,0,0,0,0,0,0,0,0,245,245,245,245,0,0,0,245}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,249,249,0,0,0,0,0,249,0,249,249,0,0,0,0,0,0,0,0,249,249,249,249,0,0,0,249}, 

{0,0,0,0,0,246,246,0,0,0,0,0,246,0,246,246,0,0,0,0,0,0,0,0,246,246,246,246,0,0,0,246}, 

{0,0,0,0,0,248,248,0,0,0,0,0,248,0,248,248,0,0,0,0,0,0,0,0,248,248,248,248,0,0,0,248}, 

{0,0,0,64,0,191,223,0,0,0,96,64,159,96,159,255,0,0,0,0,0,0,0,0,159,223,159,255,32,32,64,255}, 

{0,0,0,0,0,248,120,0,0,0,160,32,88,160,120,248,0,0,0,0,0,0,0,0,120,88,88,248,128,128,0,216}, 

{0,0,0,0,64,58,186,64,0,0,32,160,218,160,58,250,0,0,0,0,0,0,0,0,122,90,218,122,0,128,128,90}, 

{0,0,0,128,0,96,224,0,0,0,160,160,80,160,64,208,0,0,0,0,0,0,16,16,80,240,80,208,32,48,176,192}

, 

{0,0,0,0,192,47,175,16,0,0,144,16,239,16,15,239,0,0,0,0,0,0,0,0,127,111,255,255,128,16,176,47}

, 

{0,0,16,0,32,109,157,16,0,16,144,32,253,32,141,61,0,0,0,0,0,0,0,0,77,93,205,221,176,160,240,29

}, 

{0,0,0,128,32,30,30,144,0,16,224,176,206,144,62,14,0,0,0,0,64,0,64,0,14,254,30,206,112,208,112

,206}, 

{0,0,0,0,0,12,140,128,0,0,64,128,236,0,28,188,0,0,0,0,0,0,0,0,44,108,44,204,48,32,112,44}, 

{0,0,0,32,64,111,111,96,0,96,64,192,15,32,255,207,0,0,0,0,0,0,0,128,111,15,47,47,32,192,0,31}, 

{0,0,0,0,8,69,77,200,0,64,32,40,5,64,125,125,0,0,0,0,0,32,2,16,45,45,7,77,104,74,80,173}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

246 

 

 

{0,0,0,104,64,69,93,32,64,32,136,8,109,192,71,229,0,0,0,0,0,2,0,18,165,5,237,109,128,0,8,229}, 

{0,0,0,98,163,72,29,70,0,98,229,8,18,15,232,142,0,0,0,0,0,0,0,0,37,0,73,178,17,175,137,98}, 

{0,0,34,8,4,38,4,19,32,2,15,13,27,61,46,45,0,0,0,0,0,0,128,128,4,40,12,34,48,41,6,2}, 

{0,0,0,42,34,14,34,75,32,10,2,5,47,98,30,109,0,0,0,0,0,16,0,0,8,0,36,42,32,34,111,76}, 

{0,0,0,2,3,76,2,0,0,2,3,77,13,97,79,108,0,0,0,0,0,0,32,32,0,0,76,34,96,33,92,110}, 

{0,0,1,4,1,31,0,4,0,7,1,25,13,49,11,29,0,0,0,0,0,0,0,0,4,0,8,2,53,4,24,46}, 

{0,0,0,0,0,12,3,0,0,0,0,12,44,32,44,44,0,0,0,0,0,32,2,2,0,0,12,0,32,0,12,28}, 

{0,0,0,0,4,9,9,0,0,0,0,0,13,4,15,15,0,0,0,0,0,0,0,0,13,13,9,9,2,6,6,25}, 

{0,0,0,0,0,15,15,0,0,0,0,0,15,0,15,15,0,0,0,0,0,0,0,0,15,15,15,15,0,0,0,31}, 

{0,0,0,0,0,15,15,0,0,0,0,0,15,0,15,15,0,0,0,0,0,0,0,0,15,15,15,15,0,0,0,47}, 

{0,0,0,0,0,31,15,16,0,0,0,0,15,0,15,31,0,0,0,0,0,0,0,0,15,15,15,15,0,16,16,127}, 

{0,0,0,0,16,31,31,16,0,0,0,0,15,0,15,15,0,0,0,0,0,16,0,16,15,15,15,15,16,16,16,31}, 

{0,0,0,0,0,31,31,0,0,0,0,0,31,16,15,31,0,0,0,0,0,0,0,32,31,31,31,31,0,0,0,47}, 

{0,0,0,0,0,63,191,128,0,0,0,0,63,0,63,63,0,0,0,0,0,0,0,0,63,63,63,63,0,0,128,63}, 

{0,0,0,0,0,255,191,64,0,0,0,0,191,0,191,63,0,0,0,0,0,64,0,0,191,191,191,191,64,0,0,255}, 

{0,0,0,0,0,255,191,0,0,0,0,0,191,0,191,255,0,0,0,0,0,0,0,0,191,191,191,191,0,64,64,191}, 

{0,0,0,0,0,191,191,32,0,0,0,0,159,0,159,159,0,0,0,0,0,0,0,32,159,191,191,159,0,32,32,191}, 

{0,0,0,0,0,31,159,128,0,0,0,0,15,144,15,31,0,0,0,0,0,0,0,32,15,159,159,15,144,16,32,175}, 

{0,0,0,0,0,15,31,0,0,0,0,0,15,0,31,15,0,0,0,0,0,0,0,0,15,15,15,15,0,0,0,95}, 

{0,0,0,0,0,15,13,0,0,0,0,0,15,32,13,15,0,0,0,0,0,0,0,0,13,13,15,15,2,32,34,95}, 

{0,0,0,0,0,13,45,32,0,0,0,0,45,34,13,45,0,0,0,0,0,0,0,2,13,13,13,13,0,32,0,47}, 

{0,0,0,0,0,13,13,0,0,0,0,0,13,0,13,13,0,0,0,0,0,0,0,0,13,13,13,13,0,0,0,29}, 

{0,0,0,0,5,8,8,4,0,0,0,0,13,4,9,12,0,0,0,0,0,0,0,0,13,13,13,9,4,4,4,9}, 

{0,0,0,6,2,12,10,6,0,6,0,0,14,10,14,8,0,0,0,0,0,0,1,0,4,0,8,14,12,2,8,26}, 

{0,0,0,9,1,29,7,0,0,9,5,4,31,9,3,19,0,0,0,0,0,0,0,0,12,4,0,8,25,9,20,55}, 

{0,0,1,0,44,4,4,42,0,45,1,0,40,81,112,5,0,0,0,0,0,0,64,18,12,0,44,32,40,53,88,61}, 

{0,0,0,33,44,52,32,0,32,13,0,33,18,22,43,123,0,0,0,0,0,0,0,0,12,32,4,12,48,15,1,120}, 

{0,0,0,33,37,48,20,138,32,1,14,29,20,30,25,25,0,0,0,0,0,0,0,0,4,40,40,22,53,9,18,167}, 

{0,0,0,97,166,34,72,80,0,96,163,118,82,27,9,46,0,0,0,0,0,0,0,0,37,6,81,128,227,24,212,37}, 

{0,0,0,32,8,37,45,168,0,32,136,32,165,10,71,45,0,0,0,0,0,2,2,64,37,133,37,13,8,136,160,221}, 

{0,0,0,72,64,79,103,88,0,64,72,40,103,40,15,47,0,0,0,0,0,0,0,0,39,103,39,15,0,72,0,15}, 

{0,0,0,0,0,15,15,16,0,0,0,64,71,0,207,143,0,0,0,0,0,64,0,192,71,71,7,79,8,8,192,143}, 

{0,0,0,0,32,108,12,96,0,16,96,48,44,48,12,76,0,0,0,0,0,0,0,16,12,28,28,76,96,80,112,60}, 

{0,0,0,0,16,45,29,48,0,0,112,16,109,64,77,45,0,0,0,0,0,0,0,64,13,77,13,61,64,96,16,61}, 

{0,0,0,0,64,174,174,176,0,0,160,128,206,176,46,62,0,0,0,0,0,0,0,0,110,206,206,78,160,128,16,46

}, 

{0,0,0,0,80,47,111,64,0,0,0,192,175,144,127,63,0,0,0,0,128,0,128,0,255,191,255,127,0,64,0,111}

, 

{0,0,0,0,0,112,96,0,0,0,144,0,96,16,224,240,0,0,0,0,128,0,0,0,224,224,96,240,16,16,0,240}, 

{0,0,0,0,208,7,7,208,0,0,144,0,87,128,87,247,0,0,0,0,0,0,0,0,215,87,71,215,128,0,128,55}, 

{0,0,0,0,0,244,244,0,0,0,32,32,212,32,244,244,0,0,0,0,0,0,0,0,244,212,212,244,0,0,0,212}, 

{0,0,0,64,0,191,223,32,0,0,64,64,159,64,159,255,0,0,0,0,0,0,0,0,191,255,159,223,32,0,64,223}, 

{0,0,0,0,0,248,248,0,0,0,0,0,248,0,248,248,0,0,0,0,0,0,0,0,248,248,248,248,0,0,0,248}, 

{0,0,0,0,0,247,247,0,0,0,0,0,247,0,247,247,0,0,0,0,0,0,0,0,247,247,247,247,0,0,0,247}, 

{0,0,0,0,0,248,248,0,0,0,0,0,248,0,248,248,0,0,0,0,0,0,0,0,248,248,248,248,0,0,0,248}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255}, 

{0,0,0,0,0,255,255,0,0,0,0,0,255,0,255,255,0,0,0,0,0,0,0,0,255,255,255,255,0,0,0,255} 

}; 

 

 

uint8_t minimum(uint8_t a, uint8_t b) { 

  return a < b ? a : b; 

} 

 

void skLoadPixel(uint8_t row, uint8_t c, uint8_t r, uint8_t g, uint8_t b) { 

  uint8_t w = minimum(r,minimum(g,b)); 

  skLoadPixel(row, c, r-w, g-w, b-w, w); 

} 

 

void skLoadPixel(uint8_t row, uint8_t c, uint8_t r, uint8_t g, uint8_t b, uint8_t w) { 

  for(int8_t n = 7; n >= 0; n--) { 

    writeBit(7-n, c, row, (g>>n) & 1); 

    writeBit(15-n, c, row, (r>>n) & 1); 

    writeBit(23-n, c, row, (b>>n) & 1); 

    writeBit(31-n, c, row, (w>>n) & 1); 

  } 

} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

247 

 

 

 

void skLoadPixel(uint8_t row, uint8_t column, uint32_t hex) { 

  skLoadPixel(row, column, hex>>24, hex>>16, hex>>8, hex); 

} 

 

void skSendPixels() {  

  SREG &= ~(1<<7);    //interrupts off 

  for(uint8_t column = 0; column < 60; column++) { 

    for(uint8_t n = 0; n < 32; n++) { 

      writePixelBit(pixelData[column][n]);     

    } 

  } 

  SREG |= 1<<7;       //interrupts on 

} 

 

void writePixelBit(uint8_t data) { 

  PIXEL_PORT = 255;   //controls whole port in 2 clock cycles 

  //PIXEL_PORT |= LED_PINS; extra 2 clock cycles 

  __builtin_avr_delay_cycles(T_BLOCK - 2); 

  PIXEL_PORT = data;  //controls whole port in 2 clock cycles 

  //PIXEL_PORT &= ~data; extra 2 clock cycles 

  __builtin_avr_delay_cycles(T_BLOCK - 2); 

  PIXEL_PORT = 0;     //controls whole port in 2 clock cycles 

  //PIXEL_PORT &= ~LED_PINS; extra 2 clock cycles 

  __builtin_avr_delay_cycles(T_BLOCK - 2); 

} 

 

void showLEDs() { 

  PIXEL_PORT = 0; 

  __builtin_avr_delay_cycles(LATCH); 

} 

 

void setup() { 

  //Serial.begin(9600); 

  PIXEL_DDR |= 255; 

 

  for(uint8_t x = 0; x < 60; x++) { 

    for(uint8_t y = 0; y < 32; y++) { 

      pixelData[x][y] = 0; 

    } 

  } 

  delay(5000); 

} 

 

void loop() { 

 

  SREG &= ~(1<<7);  

  for(uint8_t column = 0; column < 96; column++) { 

    for(uint8_t n = 0; n < 32; n++) { 

      writePixelBit(pgm_read_byte(&rsgcLogo[column][n]));  //goes to address of data in 

PROGMEM and reads 

    } 

  } 

  SREG |= 1<<7;    

  showLEDs(); 

  delay(3000); 

 

  SREG &= ~(1<<7);  

  for(uint8_t column = 0; column < 96; column++) { 

    for(uint8_t n = 0; n < 32; n++) { 

      writePixelBit(pgm_read_byte(&acesLogo[column][n]));  //goes to address of data in 

PROGMEM and reads 

    } 

  } 

  SREG |= 1<<7;    

  showLEDs(); 

  delay(3000); 

 

  SREG &= ~(1<<7);  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

248 

 

 

  for(uint8_t column = 0; column < 96; column++) { 

    for(uint8_t n = 0; n < 32; n++) { 

      writePixelBit(pgm_read_byte(&darcy[column][n]));  //goes to address of data in PROGMEM 

and reads 

    } 

  } 

  SREG |= 1<<7;    

  showLEDs(); 

  delay(3000); 

   

 

  for(uint8_t x = 0; x < 12; x++) { 

   

    //---------1 

    SREG &= ~(1<<7);  

    for(uint8_t column = 0; column < 96; column++) { 

      for(uint8_t n = 0; n < 32; n++) { 

        writePixelBit(pgm_read_byte(&nyan1[column][n]));  //goes to address of data in PROGMEM 

and reads 

      } 

    } 

    SREG |= 1<<7;    

    showLEDs(); 

     

    delay(50); 

   

    //------------2 

    SREG &= ~(1<<7);  

    for(uint8_t column = 0; column < 96; column++) { 

      for(uint8_t n = 0; n < 32; n++) { 

        writePixelBit(pgm_read_byte(&nyan2[column][n])); 

      } 

    } 

    SREG |= 1<<7;  

    showLEDs(); 

     

    delay(50); 

   

    //-----------3 

    SREG &= ~(1<<7);  

    for(uint8_t column = 0; column < 96; column++) { 

      for(uint8_t n = 0; n < 32; n++) { 

        writePixelBit(pgm_read_byte(&nyan3[column][n])); 

      } 

    } 

    SREG |= 1<<7;  

    showLEDs(); 

     

    delay(50); 

   

    //---------------4 

    SREG &= ~(1<<7);  

    for(uint8_t column = 0; column < 96; column++) { 

      for(uint8_t n = 0; n < 32; n++) { 

        writePixelBit(pgm_read_byte(&nyan4[column][n])); 

      } 

    } 

    SREG |= 1<<7;  

    showLEDs(); 

     

    delay(50); 

   

    //--------------5 

    SREG &= ~(1<<7);  

    for(uint8_t column = 0; column < 96; column++) { 

      for(uint8_t n = 0; n < 32; n++) { 

        writePixelBit(pgm_read_byte(&nyan5[column][n])); 

      } 

    } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

249 

 

 

    SREG |= 1<<7;  

    showLEDs(); 

     

    delay(50); 

   

    //----------------6 

    SREG &= ~(1<<7);  

    for(uint8_t column = 0; column < 96; column++) { 

      for(uint8_t n = 0; n < 32; n++) { 

        writePixelBit(pgm_read_byte(&nyan6[column][n])); 

      } 

    } 

    SREG |= 1<<7;  

    showLEDs(); 

     

    delay(50); 

  } 

 

  SREG &= ~(1<<7); 

  for(uint8_t n = 0; n < 10; n++) { 

    for(uint16_t x = 0; x < 384; x++) { 

      writePixel(255, 100, 0); 

      writePixel(0, 0, 0); 

    } 

    showLEDs(); 

    delay(30); 

    for(uint16_t x = 0; x < 384; x++) { 

      writePixel(0, 0, 0); 

      writePixel(255, 100, 0); 

    }   

    showLEDs(); 

    delay(30); 

  } 

  //SREG |= 1<<7; 

   

  skSendPixels(); 

  showLEDs(); 

  delay(100); 

 

  for(uint16_t x = 0; x < 1000; x++) { 

    skLoadPixel(random(0, 60), random(0, 32), random(0, 255), random(0, 255), random(0, 255)); 

    skSendPixels(); 

    showLEDs(); 

  } 

} 

 

void writePixel(uint8_t r, uint8_t g, uint8_t b) { 

  uint8_t w = minimum(r,minimum(g,b)); 

  sendByte(g - w); 

  sendByte(r - w); 

  sendByte(b - w); 

  sendByte(w); 

} 

 

void sendByte(uint8_t data) { 

  for(int8_t x = 7; x >= 0; x--) { 

    sendBit(0 - ((data>>x) & 1)); 

  } 

} 

 

void sendBit(uint8_t data) { 

  PIXEL_PORT = 255;   //controls whole port in 2 clock cycles 

  //PIXEL_PORT |= LED_PINS; extra 2 clock cycles 

  __builtin_avr_delay_cycles(T_BLOCK - 2); 

  PIXEL_PORT = data;  //controls whole port in 2 clock cycles 

  //PIXEL_PORT &= ~data; extra 2 clock cycles 

  __builtin_avr_delay_cycles(T_BLOCK - 2); 

  PIXEL_PORT = 0;     //controls whole port in 2 clock cycles 

  //PIXEL_PORT &= ~LED_PINS; extra 2 clock cycles 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

250 

 

 
 

  __builtin_avr_delay_cycles(T_BLOCK - 2); 

} 

 

uint8_t writeBit(uint8_t n, uint8_t c, uint8_t r, uint8_t b) {  

 

  //other methods: 

  /* 

  if(b) { 

    pixelData[c][n] |= 1<<r; 

  } else  { 

    pixelData[c][n] &= ~(1<<r); 

  }*/ 

   

  //pixelData[c][n] ^= (-b ^ pixelData[c][n]) & (1 << r); 

  //*(*(pixelData+c)+n) ^= (-b ^ *(*(pixelData + c) + n)) & (1 << r); 

  //pixelData[c][n] ^= (-b ^ *(*(pixelData + c) + n)) & (1 << r); 

  //pixelData[c][n] = (pixelData[c][n] & ~(1 << r)) | (-b & (1 << r)); 

   

  pixelData[c][n] &= ~(1 << r);   //clear bit 

  pixelData[c][n] |= b << r;      //write a 0 or 1, depends on b 

} 

 

void white() { 

  for(uint8_t x = 0; x < 8; x++) { 

    for(uint8_t y = 0; y < 32; y++) { 

      skLoadPixel(x, y, 0, 0, 0, 255); 

    } 

  } 

} 

 

void black() { 

  for(uint8_t x = 0; x < 8; x++) { 

    for(uint8_t y = 0; y < 32; y++) { 

      skLoadPixel(x, y, 0, 0, 0, 0); 

    } 

  } 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

251 

 

ATtiny84 

 
 

// PROJECT  : Control SK6812s with ATtiny84 

// PURPOSE  : Medium ISP 

// COURSE   : ICS4U 

// AUTHOR   : Xander Chin 

// DATE     : Feburary 20, 2022 

// MCU      : ATtiny84 

// STATUS   : Working 

// REFERENCE: 

 

const uint8_t attiny[96][32] PROGMEM = { 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{0,0,0,0,183,183,0,167,167,0,167,167,167,167,167,0,0,0,0,16,0,0,16,0,0,0,183,167,0,183,183,0}, 

{0,0,0,0,175,175,0,175,175,0,175,175,175,175,175,0,0,0,0,0,0,0,0,0,0,0,175,175,0,175,175,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,183,183,0,183,183,0,183,183,183,183,183,0,0,0,0,0,0,0,0,0,8,8,191,191,8,191,191,8}, 

{0,0,0,0,183,183,0,183,183,0,183,183,183,183,183,0,0,0,0,0,0,0,0,0,8,8,191,191,8,191,191,8}, 

{0,0,0,0,183,183,0,183,183,0,183,183,183,183,183,0,0,0,0,0,0,0,0,0,8,8,191,191,8,191,191,8}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,183,183,0,183,183,0,183,183,183,183,183,0,0,0,0,0,0,0,0,0,8,8,191,191,8,191,191,8}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,143,143,0,143,143,0,143,143,143,143,143,0,0,0,0,0,0,0,0,0,48,48,191,191,48,191,191,48

}, 

{0,0,0,0,167,167,0,167,167,0,167,167,167,167,167,0,0,0,0,0,0,0,0,0,24,24,191,191,24,191,191,24

}, 

{0,0,0,0,143,143,0,143,143,0,143,143,143,143,143,0,0,0,0,0,0,0,0,0,48,48,191,191,48,191,191,48

}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,167,167,0,167,167,0,167,167,167,167,167,0,0,0,0,0,0,0,0,0,24,24,191,191,24,191,191,24

}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,135,135,0,135,135,0,135,135,135,135,135,0,0,0,0,0,0,0,0,0,56,56,191,191,56,191,191,56

}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,183,183,0,183,183,0,183,183,183,183,183,0,0,0,0,0,0,0,0,0,8,8,191,191,8,191,191,8}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,183,183,0,183,183,0,183,183,183,183,183,0,0,0,0,0,0,0,0,0,8,8,191,191,8,191,191,8}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,191,191,0,191,191,0,191,191,191,191,191,0,0,0,0,0,0,0,0,0,0,0,191,191,0,191,191,0}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,251,251,0,251,251,0,251,251,251,251,251,0,0,0,0,0,0,0,0,0,4,4,255,255,4,255,255,4}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,177,177,0,177,177,0,177,177,177,177,177,0,0,0,0,0,0,0,0,0,12,12,189,189,12,189,189,12

}, 

{0,0,0,0,181,181,0,181,181,0,181,181,181,181,181,0,0,0,0,0,0,0,0,0,8,8,189,189,8,189,189,8}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,247,247,0,247,247,0,247,247,247,247,247,0,0,0,0,0,0,0,0,0,8,8,255,255,8,255,255,8}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,133,133,0,133,133,0,133,133,133,133,133,0,0,0,0,0,0,0,0,0,56,56,189,189,56,189,189,56

}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

252 

 

 

{0,0,0,0,227,227,0,227,227,0,227,227,227,227,227,0,0,0,0,0,0,0,0,0,28,28,255,255,28,255,255,28

}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,133,133,0,133,133,0,133,133,133,133,133,0,0,0,0,0,0,0,0,0,56,56,189,189,56,189,189,56

}, 

{0,0,0,0,219,219,0,219,219,0,219,219,219,219,219,0,0,0,0,0,0,0,0,0,36,36,255,255,36,255,255,36

}, 

{0,0,0,0,207,207,0,207,207,0,207,207,207,207,207,0,0,0,0,0,0,0,0,0,48,48,255,255,48,255,255,48

}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,185,185,0,185,185,0,185,185,185,185,185,0,0,0,0,0,0,0,0,0,4,4,189,189,4,189,189,4}, 

{0,0,0,0,243,243,0,243,243,0,243,243,243,243,243,0,0,0,0,0,0,0,0,0,12,12,255,255,12,255,255,12

}, 

{0,0,0,0,251,251,0,251,251,0,251,251,251,251,251,0,0,0,0,0,0,0,0,0,4,4,255,255,4,255,255,4}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,181,181,0,181,181,0,181,181,181,181,181,0,0,0,0,0,0,0,0,0,8,8,189,189,8,189,189,8}, 

{0,0,0,0,251,251,0,251,251,0,251,251,251,251,251,0,0,0,0,0,0,0,0,0,4,4,255,255,4,255,255,4}, 

{0,0,0,0,247,247,0,247,247,0,247,247,247,247,247,0,0,0,0,0,0,0,0,0,8,8,255,255,8,255,255,8}, 

{0,0,0,0,189,189,0,189,189,0,189,189,189,189,189,0,0,0,0,0,0,0,0,0,0,0,189,189,0,189,189,0}, 

{0,0,0,0,181,181,0,181,181,0,181,181,181,181,181,0,0,0,0,0,0,0,0,0,0,0,181,181,0,181,181,0}, 

{0,0,0,0,239,239,0,231,231,0,231,231,231,231,231,0,0,0,0,8,0,0,8,0,0,0,239,231,0,239,239,0}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{0,0,0,0,253,253,0,245,245,0,245,245,245,245,245,0,0,0,0,8,0,0,8,0,0,0,253,245,0,253,253,0}, 

{0,0,0,0,245,245,0,245,245,0,245,245,245,245,245,0,0,0,0,0,0,0,0,0,0,0,245,245,0,245,245,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,249,249,0,249,249,0,249,249,249,249,249,0,0,0,0,0,0,0,0,0,4,4,253,253,4,253,253,4}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,249,249,0,249,249,0,249,249,249,249,249,0,0,0,0,0,0,0,0,0,4,4,253,253,4,253,253,4}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,249,249,0,249,249,0,249,249,249,249,249,0,0,0,0,0,0,0,0,0,4,4,253,253,4,253,253,4}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,233,233,0,233,233,0,233,233,233,233,233,0,0,0,0,0,0,0,0,0,20,20,253,253,20,253,253,20

}, 

{0,0,0,0,233,233,0,233,233,0,233,233,233,233,233,0,0,0,0,0,0,0,0,0,20,20,253,253,20,253,253,20

}, 

{0,0,0,0,233,233,0,233,233,0,233,233,233,233,233,0,0,0,0,0,0,0,0,0,20,20,253,253,20,253,253,20

}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,237,237,0,237,237,0,237,237,237,237,237,0,0,0,0,0,0,0,0,0,16,16,253,253,16,253,253,16

}, 

{0,0,0,0,237,237,0,237,237,0,237,237,237,237,237,0,0,0,0,0,0,0,0,0,16,16,253,253,16,253,253,16

}, 

{0,0,0,0,237,237,0,237,237,0,237,237,237,237,237,0,0,0,0,0,0,0,0,0,16,16,253,253,16,253,253,16

}, 

{0,0,0,0,249,249,0,249,249,0,249,249,249,249,249,0,0,0,0,0,0,0,0,0,4,4,253,253,4,253,253,4}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,249,249,0,249,249,0,249,249,249,249,249,0,0,0,0,0,0,0,0,0,4,4,253,253,4,253,253,4}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,249,249,0,249,249,0,249,249,249,249,249,0,0,0,0,0,0,0,0,0,4,4,253,253,4,253,253,4}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,253,253,0,253,253,0,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,253,253,0,253,253,0}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{0,0,0,0,255,255,0,255,255,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,255,255,0} 

}; 

 

const uint8_t attinyfill[96][32] PROGMEM = { 

{60,0,60,60,195,195,0,195,255,60,195,195,195,255,195,0,0,0,0,0,0,0,0,0,0,0,255,255,60,195,255,

60}, 

{64,0,64,64,131,131,0,131,195,64,131,131,131,195,131,0,0,0,0,0,0,0,0,0,0,0,195,195,64,131,195,

64}, 

{0,0,0,0,131,131,0,131,131,0,131,131,131,131,131,0,0,0,0,0,0,0,0,0,0,0,131,131,0,131,131,0}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

253 

 

 
 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{2,0,2,2,129,129,0,129,131,2,129,129,129,131,129,0,0,0,0,0,0,0,0,0,0,0,131,131,2,129,131,2}, 

{0,0,0,0,131,131,0,131,131,0,131,131,131,131,131,0,0,0,0,0,0,0,0,0,0,0,131,131,0,131,131,0}, 

{64,0,64,64,131,131,0,131,195,64,131,131,131,195,131,0,0,0,0,0,0,0,0,0,0,0,195,195,64,131,195,

64}, 

{60,0,60,60,195,195,0,195,255,60,195,195,195,255,195,0,0,0,0,0,0,0,0,0,0,0,255,255,60,195,255,

60}, 

{60,0,60,60,195,195,0,195,255,60,195,195,195,255,195,0,0,0,0,0,0,0,0,0,0,0,255,255,60,195,255,

60}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

254 

 

 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{0,0,0,0,129,129,0,129,129,0,129,129,129,129,129,0,0,0,0,0,0,0,0,0,0,0,129,129,0,129,129,0}, 

{66,0,66,66,129,129,0,129,195,66,129,129,129,195,129,0,0,0,0,0,0,0,0,0,0,0,195,195,66,129,195,

66}, 

{0,0,0,0,195,195,0,195,195,0,195,195,195,195,195,0,0,0,0,0,0,0,0,0,0,0,195,195,0,195,195,0}, 

{60,0,60,60,195,195,0,195,255,60,195,195,195,255,195,0,0,0,0,0,0,0,0,0,0,0,255,255,60,195,255,

60}, 

{60,0,60,60,195,195,0,195,255,60,195,195,195,255,195,0,0,0,0,0,0,0,0,0,0,0,255,255,60,195,255,

60}, 

{2,0,2,2,193,193,0,193,195,2,193,193,193,195,193,0,0,0,0,0,0,0,0,0,0,0,195,195,2,193,195,2}, 

{0,0,0,0,193,193,0,193,193,0,193,193,193,193,193,0,0,0,0,0,0,0,0,0,0,0,193,193,0,193,193,0}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{64,0,64,64,129,129,0,129,193,64,129,129,129,193,129,0,0,0,0,0,0,0,0,0,0,0,193,193,64,129,193,

64}, 

{0,0,0,0,193,193,0,193,193,0,193,193,193,193,193,0,0,0,0,0,0,0,0,0,0,0,193,193,0,193,193,0}, 

{2,0,2,2,193,193,0,193,195,2,193,193,193,195,193,0,0,0,0,0,0,0,0,0,0,0,195,195,2,193,195,2}, 

{60,0,60,60,195,195,0,195,255,60,195,195,195,255,195,0,0,0,0,0,0,0,0,0,0,0,255,255,60,195,255,

60} 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

255 

 

 
 

 

 

}; 

 

 

uint64_t red = 0; 

uint64_t green = 0; 

uint64_t blue = 0; 

uint64_t white = 0; 

 

void setup() { 

  //Serial.begin(9600); 

  DDRA |= 255; 

  //DDRB |= 255; 

 

  delay(3000); 

} 

 

void loop() { 

    

   for(uint8_t x = 0; x < 10; x++) { 

     SREG &= ~(1<<7);  

     for(uint8_t column = 0; column < 96; column++) { 

       for(uint8_t n = 0; n < 32; n++) { 

         sendBit(pgm_read_byte(&attiny[column][n])); 

       } 

     } 

     SREG |= 1<<7;  

     showLEDs(); 

     delay(200); 

 

     SREG &= ~(1<<7);  

     for(uint8_t column = 0; column < 96; column++) { 

       for(uint8_t n = 0; n < 32; n++) { 

         sendBit(pgm_read_byte(&attinyfill[column][n])); 

       } 

     } 

     SREG |= 1<<7;  

     showLEDs(); 

     delay(200);  

   } 

 

   SREG &= ~(1<<7); 

   for(uint8_t n = 0; n < 10; n++) { 

     for(uint16_t x = 0; x < 384; x++) { 

       writePixel(150, 0, 255); 

       writePixel(0, 0, 0); 

     } 

     showLEDs(); 

     delay(30); 

     for(uint16_t x = 0; x < 384; x++) { 

       writePixel(0, 0, 0); 

       writePixel(150, 0, 255); 

     }   

     showLEDs(); 

     delay(30); 

   } 

 

   for(uint16_t x = 0; x < 300; x++) { 

     uint16_t currentPixelHue = x;   //moves rainbow pattern 

     SREG &= ~(1<<7); 

     for(uint8_t n = 0; n < 97; n++) {             

       uint8_t phase = currentPixelHue >> 8; 

       uint8_t s = currentPixelHue & 0xff; 

 

       //rainbow pattern: 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

256 

 

 
 

       switch (phase) {    //calculate all pixels then write them  

         case 0:  

           writePixel(~s, s, 0); 

           break;         

         case 1:  

           writePixel(0, ~s, s); 

           break; 

         case 2:  

           writePixel(s, 0, ~s); 

           break;          

       }       

       currentPixelHue = (currentPixelHue + 10) % (3*256);   //increase hue by each led 

position 

     } 

     SREG |= 1<<7; 

     showLEDs(); 

     delayMicroseconds(1);   //speed control 

  } 

 

void writePixel(uint8_t r, uint8_t g, uint8_t b) { 

  uint8_t w = minimum(r,minimum(g,b)); 

  sendByte(g - w); 

  sendByte(r - w); 

  sendByte(b - w); 

  sendByte(w); 

} 

 

void sendByte(uint8_t data) { 

  for(int8_t x = 7; x >= 0; x--) { 

    sendBit(0 - ((data>>x) & 1)); 

  } 

} 

 

void sendBit(uint8_t data) { 

  PORTA = 255; 

  //PORTB = 255; 

  __builtin_avr_delay_cycles(2); 

  PORTA = data; 

  //PORTB = data; 

  __builtin_avr_delay_cycles(2); 

  PORTA = 0; 

  //PORTB = 0; 

  __builtin_avr_delay_cycles(2); 

} 

 

void showLEDs() { 

  PORTA = 0; 

  //PORTB = 0; 

  __builtin_avr_delay_cycles(1000); 

} 

 

uint8_t minimum(uint8_t a, uint8_t b) { 

  return a < b ? a : b; 

} 

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

257 

 

Processing 

 

PrintWriter output; 

 

int red[] = new int[24*32]; 

int green[] = new int[24*32]; 

int blue[] = new int[24*32]; 

int white[] = new int[24*32]; 

 

int pixelData[][] = new int[96][32]; 

 

int n = 0; 

 

void setup() { 

  size(100,100); 

  PImage myImage = loadImage("attinyfill.png"); 

  image(myImage, 0, 0); 

   

  output = createWriter("nyan1.txt");  

   

  for(int y = 0; y < 24; y++) { 

    for(int x = 0; x < 32; x++) {       

      white[n] = min(int(red(get(x,y))), int(green(get(x,y))), int(blue(get(x,y)))); 

       

      red[n] = int(red(get(x,y))) - white[n]; 

      green[n] = int(green(get(x,y))) - white[n]; 

      blue[n] = int(blue(get(x,y))) - white[n]; 

      n++;    

    } 

  } 

   

   

  //println(red[170]); 

  //println(green[170]); 

  //println(blue[170]); 

  //println(white[170]); 

   

  for(int x = 0; x < 96; x++) { 

    for(int y = 0; y < 32; y++) { 

      pixelData[x][y] = 0; 

    } 

  } 

  for(int x = 0; x < 8; x++) { 

     

    for(int y = 0; y < 32; y++) { 

      for(int z = 0; z < 8; z++) { 

        pixelData[y][z] |= ((green[y+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+8] |= ((red[y+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+16] |= ((blue[y+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+24] |= ((white[y+(x*96)] >> (7-z)) & 1) << x; 

      } 

    } 

     

    for(int y = 32; y < 64; y++) { 

      for(int z = 0; z < 8; z++) { 

        pixelData[y][z] |= ((green[(95-y)+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+8] |= ((red[(95-y)+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+16] |= ((blue[(95-y)+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+24] |= ((white[(95-y)+(x*96)] >> (7-z)) & 1) << x; 

      } 

    } 

    for(int y = 64; y < 96; y++) { 

      for(int z = 0; z < 8; z++) { 

        pixelData[y][z] |= ((green[y+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+8] |= ((red[y+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+16] |= ((blue[y+(x*96)] >> (7-z)) & 1) << x; 

        pixelData[y][z+24] |= ((white[y+(x*96)] >> (7-z)) & 1) << x; 

      } 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

258 

 

 
 

Media 

 

 

Connector board used for testing and 

soldering LEDs 

Lighting up some pixels of the small RGB 

matrix 

 

YouTube link: https://youtu.be/KatHkq3PDNg  

 

    } 

  } 

   

  output.println("{"); 

  for(int x = 0; x < 96; x++) { 

    output.print("{"); 

    for(int y = 0; y < 32; y++) { 

      output.print(pixelData[x][y]); 

      if(!(y == 31)) output.print(","); 

    } 

    output.print("}"); 

    if(!(x == 95)) output.println(","); 

  } 

  output.println("}"); 

  output.flush(); // Writes the remaining data to the file 

  output.close(); // Finishes the file 

   

  println(pixelData[0][1]); 

  //println(green[96*0]); 

  println(((green[96*0] >> 6) & 1) << 0); 

  println(((green[96*1] >> 6) & 1) << 1); 

  println(((green[96*2] >> 6) & 1) << 2); 

  println(((green[96*3] >> 6) & 1) << 3); 

  println(((green[96*4] >> 6) & 1) << 4); 

  println(((green[96*5] >> 6) & 1) << 5); 

  println(((green[96*6] >> 6) & 1) << 6); 

  println(((green[96*7] >> 6) & 1) << 7); 

   

} 

 

void draw() { 

   

} 

 

 

https://youtu.be/KatHkq3PDNg


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

259 

 

Reflection 

Firstly, I apologize for submitting a day late. Though I hope to somewhat justify that with the 

effort put into filming and editing, I really did underestimate the amount of time I needed to put 

into this ISP. I got carried away with the complexity and ambitions of such a conceptually simple 

project which shows that I still need work on when to stop. Therefore I hope to gain a better 

sense of time, as I frequently found myself rushing through the soldering of this ISP. So, I will 

take my lessons learned in this ISP and use them to improve myself in the next and final ISP. On 

the positive side, I am truly happy with what I have achieved and I want to experiment more with 

how I can control the LEDs. A large panel opens up opportunities to interface it with anything 

such as a small camera monitor or data from IoT devices. Using the AVR microcontrollers and 

trying to push the limits of what it can do was quite fun and satisfying, especially when I got the 

ATtiny84 to control lots of work. A lot of the concepts recently learned in class applied to what I 

had to program, and such an exposure led me to come up with some ideas of some features I can 

later implement. For example, the mention of different communication interrupts to signal 

microcontrollers when data is finished sending led me to think that there can be multiple slave 

MCUs where their job is to send out neopixel data which would be received through a master 

device which could be another more powerful MCU or an interface on a phone. All in all, I hope 

to continue with this ISP, though it will have to be in the summer as the next ISP takes priority.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

260 

 

Project 3.7: TWAIN Advanced 2D 

 
 

Purpose 

The TWAIN (Task Without An Interesting Name) advanced 2-Dimensional version is a 100% 

assembly program which manipulates an LED in a 2D matrix with a joystick, emulating a 

joystick positioning system with an ATtiny84. 

 

Reference 

http://darcy.rsgc.on.ca/ACES/TEI4M/2122/Tasks.html 

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf 

 

Procedure 

The project is split up into input, processing and output sections, with the ACES Dolgin 

Development Board (DDB), created by ACES ’20 Josh Dolgin, providing the foundation of the 

project instead of the regular UNO or NANO boards. While the Arduino development platform 

focuses mainly on the ATmega328P, the Dolgin Development Platform (DDP) uses the 

ATtiny84 MCU, the 14-pin version and younger brother of the ATMega328P.  

 

 

 

http://darcy.rsgc.on.ca/ACES/TEI4M/2122/Tasks.html
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

261 

 

Less ports, clock speed and other capabilities detract this MCU from the average electronic 

hobbyist, but suits those valuing efficiency in squeezing the most out of such a tiny chip or those 

whose devices don’t require a lot of computational power. Nevertheless, the chip provides a 

great starting place in port manipulation and assembly with its minimalist features opening up 

new doors to other more powerful MCUs. 

 

Like the ATtiny84, the DDB remains simplistic 

for highschool students to solder up and use. On  

the 7th current version, the DDBv7 has an onboard 

surface mount LED controlled by PA2 on the 

ATtiny84, a 5V voltage regulator and a terminal 

block and barrel jack for power. Unfortunately, 

there is no USB to serial converter IC, so an ISP 

pocket programmer is used to program the board 

where it connects to a 2  3 header. This also 

means there is no in-built serial communication so 

three external pins routed to the RX and TX pins 

serve as an optional serial output to an external 

serial to USB converter or another device. A USB 

type B connector is present but only serves to 

provide power. 

 

The beauty of the DDBv7 is the option for ACES 

to create a variety of different stackable shields 

fitted for the DDBv7 for teaching and specific or 

general usage purposes, just like UNO shields 

greatly simplify a project by providing all the 

necessary components one needs. For this project, 

a universal shield where female headers allow for flexible wiring that houses the joystick and the 

matrix.  

 

The input consists of the joystick, simply 

containing two potentiometers, one for the X-axis 

and the other one for the Y-axis as well as a 

button that activates when pressing down on the 

joystick. In total, there are five output pins, three 

for the two potentiometer analog outputs and the 

button output and the VCC and GND pins. This 

project does not use the button, only the two 

potentiometer outputs.  

 

The ATtiny84 must then be programmed to read the analog values and convert them into digial 

values using the Analog to Digital Converters (ADCs) on the pins. All are situated on PORTA of 

the ATtiny84. In the setup, PA4 and PA5 serve as the pins reading the horizontal (x-axis) and 

vertical (y-axis) respectively.  

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

262 

 

There are three ways of coding the analog read. 

Using the high level language of the Arduino IDE, 

namely analogRead(), port manipulation of 

the ATtiny84 or AVR assembly language, the 

order of which increases in complexity and 

efficiency. High level languages totally mask the 

machine code with a compiler while port 

manipulation also does the same but to a lesser 

degree. Port manipulation is also specific to 

certain MCUs so it is less portable to other 

MCUs.  

 

Assembly language is the ultimate form of low 

level code that most people write in. It is basically 

machine code that has some shortened words or 

acronyms associated with the instruction to give a 

description of what it does. The syntax of 

assembly is quite different to regular languages 

such as C and Java. It uses instructions quite like 

how high level languages use conditionals, 

variable assignments and math, however, the 

instructions are very specific. AVR assembly code 

line usually consists of an instruction and two 

operands where the instruction affects those two 

operands in some way. There are also other types of instructions that branch to different 

instructions in program memory by changing the program counter to jump to the instruction 

address and conditionals that affect certain bits in global registers. This is very reminiscent of the 

4-bit CHUMP computer instructions. Like CHUMP, the instructions are stored sequentially in 

flash memory at an address near the top and but most take up eight bits of storage instead of four 

bits with the numerical value also taking eight bits as the ATtiny84 is an 8-bit controller. There 

are also other assembly languages specific to other controllers. For example, ARM controllers 

like the ones used by Raspberry Pi and STM32’s are popular and can be coded in ARM 

assembly which is a more complex version of AVR featuring 32-bit commands. The full set of 

AVR instructions can be found in the references. 

 

At first glance, the code seems simple enough to complete as it boils down to an ADC reading 

section, a processing section and an output section. These are quite easy to do in a high level 

language like C, using the built in analogRead(), and shiftOut()as the compiler breaks it 

down into (usually inefficient) machine code. But, coding these in assembly requires a lot more 

work and understanding of the specific MCU and its ports, registers and capabilities. In return, 

flexibility and efficiency is granted to those who choose to code in assembly, as each instruction 

is on the order of clock cycles (around 125 nanoseconds each for the internal 8 MHz ATtiny84 

clock).  

 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

263 

 

Essentially, the I/O ports are setup, by loading values into those ports, an ADC reading is started 

on the specified pin, and the value from that ADC reading is shifted right to convert to map it to 

a 3-bit value. This value determines the number of times to shift left in order to shiftout a single 

bit whose bit position corresponds to the mapped ADC value. Functions such as the ADC read 

and shiftout are called by jumping to an address in flash that contains the assembly code to do so. 

The assembly code with comments can be found in the code section, explaining the different 

ports and registers used on the ATtiny84 and how each line of assembly works.  

 

Speaking of the MatrixMadeEZ, the PCB was 

made by ACES ’20 Hugo Reed. The layout and 

design is similar to the Morland bar graph but 

adds on a daisy chained TPIC6C595, a version of 

the SN74HC595 designed to sink current. Instead 

of a bar graph, it has an 88 matrix with 16 pins 

where they are evenly divided to control the eight 

rows and the eight columns. The output pins of 

the 74HC595 connect to the columns, providing 

power to the LED column anodes while the 

TPIC6C595 sink the current on the cathode side 

of the LED rows. Unfortunately, this 

configuration does not allow each LED to be 

controlled individually, so the user must implement POV where each of the rows continually 

cycle through being on, and only one row has a path to ground at any given time. The 74HC595 

then shifts out the data corresponding to the row that is on and repeats the process eight times for 

the eight rows. This will create the illusion that the matrix is displaying all the data at the same 

time.  

 

Since the project only shifts a dot around according to the joystick, POV is actually not needed. 

Instead, the 74HC595 shifts out the column value of the dot and the TPIC6C595 shifts out the 

row. So, the values presented will only have two bits on at a time. 

 

At first, the 1 dimensional TWAIN was completed for an understanding of reading from the 

ADC and outputting a value to a shift register. This easier version does not need the universal 

DDBv7 shield and only takes in an input from one potentiometer. The ADC is read and 

converted from a 10-bit to a 3-bit value denoting the position of the LED on a bar graph where it 

is shifted out to only one 74HC595. Once the 1D version was complete, the 2D implementation 

simply involved  another ADC read on the pin connecting the other joystick potentiometer and 

converting the shiftout function to a 16-bit version as the two shift registers are daisy chained. 

The low-byte for the horizontal ADC value is sent to the matrix columns and the high-byte for 

the vertical ADC is sent to the matrix rows. This systematic approach to completing the 2D 

TWAIN was an effective method as it allows oneself to split the project up into doable sections 

instead of trying to take in all of the complex steps at once. 

 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

264 

 

Media 

  

1 Dimensional TWAIN with the Morland bar 

graph and a potentiometer 

The DDBv7 universal shield with wires 

alongside the DDBv7 

 

YouTube video link: https://youtu.be/3-Q4QqpksrE  

 

Code 

 

;PROJECT    : TWAIN 2D Advanced 
;PURPOSE    : Joystick positioning system on the DDP (ATtiny84) to learn and practice assembly 
;AUTHOR     : Xander Chin 
;DATE       : 2022 03 30 
;DEVICE     : Dolgin Development Platform. Version 7. 
;MCU        : ATtiny84 
;COURSE     : ICS4U 
;STATUS     : Working 
;REFERENCE  : http://darcy.rsgc.on.ca/ACES/Datasheets/ATtiny84.pdf 
;NOTES      :  
;.include   "prescalars84.inc"  ; assembly directive equivalent to compiler directive #include 
 
.include   "prescalers84.inc"   ; assembly directive equivalent to compiler directive #include 
.def        util    = r16       ; readability is enhanced through 'use' aliases for GP Registers 
.equ        PIN     = PINA      ; its input register 
.equ  VER  = PA5  ; vertical potentiometer  
.equ  HOR  = PA4  ; horizontal potentiometer 
.equ  DAT  = PA0  ; data pin for 595's 
.equ  CLK  = PA1  ; clock pin for 595's 
.equ  LTC  = PA2  ; latch pin for 595's 
.equ  DIM  = PA3  ; output enable pin for 595's 
.def  count  = r22  ; loop counter 
.def  val  = r23  ; row/column value to be shifted out 
 
.org        0x0000              ; start of Interrupt Vector Table (IVT) aka. Jump Table 
    rjmp    setup      ; jump to flash address where code starts 
 
 
setup:     
ldi util, (1<<DAT)|(1<<CLK)|(1<<LTC)|(1<<DIM) ;setup pins for output (loads the immediate value specified into util register) 
out DDRA, util          ; setup pins for output (puts util into the DDRA register) 
cbi PORTA, DIM           ; enable output (clear DIM bit in PORTA) 
sbi PORTA, LTC                   ; set latch high (set LTC bit in PORTA) 

https://youtu.be/3-Q4QqpksrE


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

265 

 

 
  

 
loop:            ; infinite loop 
ldi util, (1<<MUX2)          ; set PA4 to read ADC 
rcall ADCReadShiftout          ; gets ADC value from PA4, converts to col/row position, shiftout val 
 
ldi util, (1<<MUX2)|(1<<MUX0)         ; set PA5 to read ADC 
rcall ADCReadShiftout          ; gets ADC value from PA5, converts to col/row position, shiftout val 
 
cbi PORTA, LTC           ; set latch low 
sbi PORTA, LTC           ; set latch high (outputs are active) 
rjmp loop            ; repeat process 
 
ADCReadShiftout: 
out ADMUX, util          ; set PA4 to read ADC 
rcall ADCSetup           ; setup ADC 
in util, ADCH           ; transfer from ADCH port to util 
rcall ADCtoPosition          ; convert value to column/row position 
mov util, val           ; move val into util for shiftout 
rcall shiftOut           ; shiftout 
ret            ; return from function - pop pc from stack 
 
ADCtoPosition:   ; translates ADC value to row/column position on matrix 
lsr util    ; shift right, now 7-bit value (max: 127) 
lsr util    ; shift right, now 6-bit value (max: 63) 
lsr util    ; shift right, now 5-bit value (max:31) 
lsr util    ; shift right, now 4-bit value (max:15) 
lsr util    ; shift right now 3-bit value (max:7) 
ldi val, 1   ; load 1 to shiftout 
shiftVal:    ; shifting loop - shifts number of times in util 
cpi util, 0   ; if util == 0 
breq doneShifting   ; break 
lsl val    ; otherwise shift left 
dec util    ; decrease util by 1 
brne shiftVal   ; repeat again 
doneShifting:   ; done 
ret    ; so return 
  
shiftOut:     ; shift out 8-bit value 
 ldi  count,8  ; so do the process 8 times... 
next: 
 cbi  PORTA,CLK  ; pull CLOCK low 
 cbi  PORTA,DAT  ; assume BIT7 is low... 
 sbrc util,7   ; did we guess right? 
 sbi  PORTA,DAT  ; ahhh, we guessed wrong, make it high :) 
 sbi  PORTA,CLK  ; pull the CLOCK HIGH! 
 
 lsl  util  ; position the next blt for inspection... 
 dec  count  ; one less to do!!! 
 brne next   ; are we done?. 
 ret    ; return from function - pop pc from stack 
 
ADCSetup: 
ldi util, (1<<ADEN)|(1<<ADSC) ;set adc enable, enable a conversion, set prescale value 
out ADCSRA, util   ;set adc enable, enable a conversion, set prescale value 
 
WaitForADCComplete:  ;wait until conversion is done 
sbic ADCSRA, ADSC   ;exit if ADSC is cleared from  
rjmp WaitForADCComplete  ;otherwise keep waiting 
 
ldi util, (1<<ADLAR) ;shifts ADC value to the leftmost positions  
out ADCSRB, util  ;do it. (ADC9 to ADC2 are now in ADCH) (ADC1 and ADC0 are the upper bits in ADCL)  
 
ret   ;return 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

266 

 

Reflection 

I am glad I got to complete a project with assembly as I really loved learning and coding with it. 

The precision you get is simply unparalleled, even with port manipulation in C, as you exactly 

know how long your code takes from the minimal clock cycle count of each instruction. This 

makes it great for sensitive timing control such as sending data to Neopixels. I feel like I have 

gone full circle in Grade 12 as the concepts in assembly relate so much to the work we did in the 

4-bit CHUMP computer. This new entry opens up the doors to other more complex assembly 

languages, and I can’t wait to try them out on the more powerful ARM and x86 processors. One 

more thing to note is the problem solving process and collaboration I did with another student 

(ACES ’22 James Colraine) to challenge and push ourselves to complete the TWAIN 2D project. 

We came up with ideas on how to approach coding this, but ended up trying to take in too much 

information and code the whole sketch at once. We eventually decided to break it down into 

smaller pieces by first completing the easier 1D TWAIN and simply repeating some of the 

functions to account for the extra dimension. So not only was this project a huge milestone in my 

software journey but it also taught me that breaking up a complex project is key to completing it.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

267 

 

Project 3.8: (ISP – Long): Improving the Giant RGBW LED Matrix 

 
 

 
 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

268 

 

Purpose 

The purpose of this ISP is to add more features to the Giant RGBW Matrix by implementing 

assembly to really push the capabilities of the Arduino NANO. This includes live streaming 

serial data to the NANO, allowing for camera output, video streaming and drawing capabilities.  

 

References 

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf 

 

Procedure 

Once finished building the wall and programming it in C, optimization of the software was next 

on the list as there were issues displaying words or patterns without using precious SRAM and 

read-only flash. More powerful MCUs like the ESP32 were considered but it was decided to see 

how much how far the trusty 8-bit 16 megahertz NANO can go. Port manipulation and high level 

C had reached its limit in optimization so AVR assembly was used to deal with the dirty work of 

transforming data and bit banging it onto the ports where clock cycle precision is required.  

 

To help analyze the waveforms, An 8 channel 

logic analyzer was bought to measure and decode  

digital signals. It can read 8 channels 

simultaneously and up to 24 MHz and for its price 

of $13 on Amazon, it was well worth it. It is what 

made optimization possible as I could now 

visualize the subtle changes made to the code. For 

example, the top picture below is a waveform 

generated using the C code developed previously. 

Comparing it with the signals generated with 

assembly code represented as the bottom picture, 

it is obvious that there is a stark difference. These 

both produce the same effect of turning on an 

LED but with the logic analyzer, the difference 

was made clear in terms of efficiency and 

precision. The C code took around 95 

microseconds to transmit four bytes of data while the assembly code took less than half that time 

at around 40 microseconds.  

 

 

 

 

 

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

269 

 

 
 

 
 

With this, numerous functions were created to 

output RGB data along with masking functions 

for scrolling messages. A mix of C, for ease of 

implementation and assembly, for prepping and 

bit banging the data, was used to get the best of 

both worlds. Assembly was at first done with the 

arduino inline assembler, which is complex, not 

well documented and not very pleasant to code in. Nevertheless code was still with it, but 

eventually discovered .s files and how they can be called from a C file, using the extern modifier, 

which allows for functions in different languages to be called upon.  

 

This was used in the serial live streaming sketch 

to call on an assembly function that gathered 

serial RGBW data from a computer or another 

MCU while simultaneously sending out the 

neopixel data, allowing for the aforementioned 

video and camera streaming without using a 

single byte of memory. It works by setting the 

serial baud rate to 2 million, the maximum baud 

rate an arduino NANO equipped with an FT232R 

USB to serial converter can handle. Other arduino 

development boards like the UNO or MEGA can 

only support up to 115200 baud rate with their 

USB to serial converters and therefore cannot 

receive data for live streaming fast enough.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

270 

 

The assembly code works by the NANO directly reading the RX pin on PD0 at set intervals, 

gathering data for 7 of the 8 bytes. On the 8th byte transmitted, the function simultaneously reads 

and bit bangs the 8 bits in parallel onto the whole of PORTB and the two highest bits on 

PORTA, as PD0 is being used to receive serial data, to stay within the 40 microsecond time 

frame in which the neopixels don't yet latch. A 0 bit is then required after every 8 bytes of data to 

prevent reading errors through accumulated error shifting in the serial communication. Reading 

from such high speeds with simultaneous transmission and data reorganization is only possible 

with assembly which is why the USART data register is not used to receive the data. Coding this 

took a very long time with timing experimentation and painstaking problem solving of getting to 

read the data properly and trying to output a clean waveform. Here is where some debug signals 

(channel D1), helped denote where the reading was taking place to help get the timing right.  

 

 
 

While coding, the ping pong balls were glued on 

in small every day increments where each one was 

tested afterwards. Bitluni, the creator of the 

original LED wall unfortunately reported that his 

LEDs were starting to die, probably from the glue. 

He mentioned using 3D printed diffusers but since 

a 3D printer wasn’t handy and the ping pong balls 

were already bought, tape was put around the 

strips to at least physically protect the LEDs from the glue. So far, it seems to have done the trick 

and there have not been any problems, but if any LEDs needed replacement, the tape can be 

easily peeled off to expose the LED for replacement.  

  



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

271 

 

In the meantime, some prototype DDB neopixel 

shields were designed to practice assembly data 

bitbanging to some SK6805 1515 (1.5 mm by 1.5 

mm) LEDs on the ATtiny84. These shields 

feature an 8  8 version controlled with PA7 and 

a 16  8 controlled in parallel with the entire 

attiny84 PORTA. Since the LEDs were so small, 

a stencil was ordered along with the PCBs and the 

PCB was oven baked. The LEDs still had to be 

placed on which was painful work, so in the 

future, a PCB manufacturing company will solder them on or larger ones such as the 2020 (2 mm 

by 2 mm) ones will be used for easier soldering.  

 

Media 

  

Traces of the 8  8 DDB serial shield Traces of the 16  8 DDB parallel shield 



Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

272 

 

  

The 8  8 serial shield and the 16  8 parallel 

shield 

Part of the serial 8  8 neopixel shield working 

on the DDBv7 

 

YouTube video link: https://youtu.be/1C1XGq-2Q_g  

 

Code 

Because of the many code files created, here is a link to my GitHub repository which contains all 

the sketches used. 

https://github.com/xanderchinxyz/rgbwmatrix 

 

Reflection 

Although I didn’t create a new device, I expanded a lot on my previous ISP with the work I did 

in assembly. I loved getting down into the details and solving a problem with the precision 

offered by assembly. Don’t get me wrong though, there were times where I just couldn’t figure 

out why the assembly code was behaving in strange ways. Half of the time it would be 

something simple like turning off global interrupts before doing any sort of time sensitive 

procedure. The other half would be lesser known problems where I had to tweak and test the 

assembler code one instruction at a time. The logic analyzer really helped with that and I have to 

say that it is probably the best tool in terms of bang for your buck as it just makes debugging and 

optimization so much easier for its cheap price. An exciting prospect about delving into complex 

and niche projects such as assembler usage for neopixel streaming is that you may be the first to 

do so, therefore cementing your role in contributing to the maker database of techniques. I don’t 

think anyone has ever tried to or successfully “live streamed” data from a computer to an 

Arduino NANO so perhaps after cleaning up the code, I will write a Hackaday article on the 

subject. This is why I chose to delve deeper into this project, as you can contribute something 

truly unique.  

  

https://youtu.be/1C1XGq-2Q_g
https://github.com/xanderchinxyz/rgbwmatrix


Royal St. George’s College Design Engineering Studio 

Advanced Computer Engineering School ICS4U – Introduction to Computers 

273 

 

Well here I am, still awake at 5 am and pulling my hopefully last all nighter, currently finishing 

off the final touches of my DER. And as the adrenaline and caffeine wears off, I must say that 

time flies and I can’t believe that I am already at the end of Highschool and with it, my time at 

the ACES program. What a great three years it has been. I’ve learnt and done so much and 

experienced so many triumphs, failures and challenges. My ways of thinking have changed and 

through all the hard work, hardships and all-nighters pulled, I have gained some invaluable 

experience not just in Engineering but in communication through my reports and videos. This 

epic portfolio of wonderful projects and my new found my passion for engineering is what I owe 

to ACES program, the student support and its creator and facilitator Mr. D’Arcy. Although the 

ACES journey ends here, I will still continue to expand on my past projects and build new ones 

where they will be posted on my personal website and YouTube channel along with all the 

previous reports as I simply love creating. And don’t worry, I will keep my DER updated as 

well. Thank you for coming along this journey with me.  

 

Here is the link to my website: https://xanderchin.xyz/ 

https://xanderchin.xyz/

